Identification of Modal Characteristics in Order to Monitor Bridges' Health in Time Domain Based on Complexity Pursuit Method

Document Type : Research Paper

Authors

1 MSc. Student, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran.

2 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran.

Abstract

Nowadays, maintenance and health monitoring of structures and infrastructures of the country are the top priority of engineers. Therefore, acceleration sensors, which are installed on the bridge are used to extract the bridge's modal response, and even the latest studies have shown that sensors that have been attached to the car's chassis can record the bridge's response to vibration. Thus, it is important to use an accurate method, which is based on the output-only, to measure frequency, damping ratio, and mode shape. As a result, practical modal analysis is used for that purpose. In this paper, a new method of blind source separation, called complexity pursuit (CP), is investigated which is able to measure and extract dynamic characteristics in the time domain. Complexity pursuit is a well-known method, that is able to recover hidden sources (independent responses of every degree of freedom) and it can calculate the mixing matrix from measured mixed output data only. Some various conditions are considered in this paper to verify complexity pursuit (3 degrees of freedom mass-spring with various damping ratios, in white Gaussian noise conditions, in non-diagonal damping matrix, close modes, and for 12 degrees of freedom mass-spring system). Comparison of the CP results and modal analysis under all the conditions showed that the proposed method is able to detect, measure and extract the modal characteristics with an error of less than 3% and in most cases less than 1%.

Keywords


 
Antoni, J. 2005. “Blind separation of vibration components: Principles and demonstrations”. Mech. Syst. Signal Proces., 18(6): 1166-1180.  doi: 10.1016/j.ymssp.2005.08.008
Antoni, J. and Chauhan, S. 2013. “A study and extension of second-order blind source separation to operational modal analysis”. J Sound Vib., 332(4): 1079-1106. doi: 10.1016/j.jsv.2012.09.016
Belouchrani, A., Abed-Meraim, K., Cardoso, J. F. and Moulines, E. 1997. “A blind source separation technique using second-order statistics”. IEEE Trans. Signal Proces., 45(2): 434-444. doi: 10.1109/78.554307
Brincker, R. and Kirkegaard, P. H. 2010. “Special issue on operational modal analysis”. Mech. Syst. Signal Proces., 24(5): 1209-1212. doi: 10.1016/j.ymssp.2010.03.005
Casas, J. R. and Moughty, J. J. 2017. “Bridge damage detection based on vibration data: Past and new developments”. Front. Built Environ., 3: 4. doi: 10.3389/fbuil.2017.00004
Chen, W. H., Lu, Z. R., Lin, W., Chen, S. H., Ni, Y. Q., Xia, Y. and Liao, W. Y. 2011. “Theoretical and experimental modal analysis of the Guangzhou New TV Tower”. Eng. Struct., 33(12): 3628-3646. doi: 10.1016/j.engstruct.2011.07.028
Hazra, B., Roffel, A. J., Narasimhan, S. and Pandey, M. D. 2009. “Modified cross-correlation method for the blind identification of structures”. J. Eng. Mech., 136(7): 889-897. doi: 10.1061/(asce)em.1943-7889.0000133
Hyvärinen, A. 2001. “Complexity pursuit: Separating interesting components from time series”. Neural Comp., 13(4): 883-898. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11255574
Hyvärinen, A. and Oja, E. 2000. “Independent component analysis: Algorithms and applications”. Neural Networks, 13: 411-430. doi: 10.1016/S0893-6080(00)00026-5
Jauhari, M. F., Fardheny, A. F. and Prasetia, D. E. I. 2020. “Nonlinear time history analysis of anti seismic device on highway bridges”. Int. J. Adv. Sci. Res. Eng., 6(6): 33-39. doi: 10.31695/IJASRE.2020.33833
Kerschen, G., Poncelet, F. and Golinval, J. C. 2007. “Physical interpretation of independent component analysis in structural dynamics”. Mech. Syst. Signal Proces,, 21(4): 1561-1575. doi: 10.1016/j.ymssp.2006.07.009
Malekjafarian, A., Golpayegani, F., Moloney, C. and Clarke, S. 2019. “A machine learning approach to bridge-damage detection using responses measured on a passing vehicle”. Sensors, 19(18): 4035. doi: 10.3390/s19184035
McNeill, S. I. and Zimmerman, D. C. 2008. “A framework for blind modal identification using joint approximate diagonalization”. Mech. Syst. Signal Proces., 22(7): 1526-1548. doi: 10.1016/j.ymssp.2008.01.010
Mottershead, J. E., Link, M. and Friswell, M. I. 2011. “The sensitivity method in finite element model updating: A tutorial”. Mech. Syst. Signal Proces., 25(7): 2275-2296. doi: 10.1016/j.ymssp.2010.10.012
Peeters, B. and De Roeck, G. 2001. “Stochastic system identification for operational modal analysis: A review”. J. Dyn. Syst. Meas. Control, 123(4): 659. doi: 10.1115/1.1410370
Poncelet, F., Kerschen, G., Golinval, J. C. and Verhelst, D. 2007. “Output-only modal analysis using blind source separation techniques”. Mech. Syst. Signal Proces., 21(6): 2335-2358. doi: 10.1016/j.ymssp.2006.12.005
Ren, W. X. and Chen, H. B. 2010. “Finite element model updating in structural dynamics by using the response surface method”. Eng. Struct., 32(8): 2455-2465. doi: 10.1016/j.engstruct.2010.04.019
Reynders, E. 2012. “System identification methods for (operational) modal analysis: Review and comparison”. Arch. Comp. Meth. Eng., 19(1): 51-124. doi: 10.1007/s11831-012-9069-x
Sadhu, A., Narasimhan, S. and Antoni, J. 2017. “A review of output-only structural mode identification literature employing blind source separation methods”. Mech. Syst. Signal Proces., 94: 415-431. doi: 10.1016/j.ymssp.2017.03.001
Shlens, J. 2014. “A tutorial on independent component analysis”. Retrieved from http://arxiv.org/abs/1404.2986
Stone, J. V. 2001. “Blind source separation using temporal predictability”. Neural Comp., 13(7): 1559-1574. doi: 10.1162/089976601750265009
Yang, Y. B. and Yang, J. P. 2018. “State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles”. Int. J. Struct. Stab. Dyn., 18(2): 1850025. doi: 10.1142/S0219455418500256
Yang, Y. and Nagarajaiah, S. 2013. “Time-frequency blind source separation for output-only modal identification using independent component analysis”. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, 139(10): 1977-1983. doi: 10.1201/b16387-288
Yang, Y. and Nagarajaiah, S. 2014. “Blind identification of damage in time-varying systems using independent component analysis with wavelet transform”. Mech. Syst. Signal Proces.. 47: 3-20. doi: 10.1016/j.ymssp.2012.08.029
Zhou, W. and Chelidze, D. 2007. “Blind source separation based vibration mode identification”. Mech. Syst. Signal Proces., 21(8): 3072-3087. doi: 10.1016/j.ymssp.2007.05.007