Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M. and Afify, H. A. 2018. “International roughness index prediction model for flexible pavements”. Int. J. Pavement Eng., 21(1): 88-99.
Chan, Y. H. 2003. “Biostatistics 104: Correlation analysis”. Singapore Med. J., 44: 614-619.
Choi, J., Adams, T. M. and Bahia, H. U. 2004. “Pavement roughness modeling using back-propagation neural networks”. Computer-Aided Civ. Infrastruct. Eng., 19(4): 295-303.
Dalla Rosa, F., Liu, L. and Gharaibeh, N. G. 2017. “IRI prediction model for use in network-level pavement management systems”. J. Transport. Eng., Part B: Pavements, 143(1): 04017001.
Golafshani, E. M. and Behnood, A. 2019. “Estimating the optimal mix design of silica fume concrete using biogeography-based programming”. Cement Concrete Compos., 96: 95-105.
Gordon, R. A. 2015. Regression analysis for the social sciences. Routledge, New York.
Labi, S. and Sinha, K. C. 2003. “The effectiveness of maintenance and its impacts on capital expenditures”. Technical Report No. FHWA/IN/JTRP 2002-27, Joint Transportation Research Program, School of Civil Engineering, Purdue University, West Lafayette, Indiana.
Lin, J., Yau, J. and Hsiao, L. 2003. “Correlation analysis between international roughness index (IRI) and pavement distress by neural network”. 82th Transportation Research Board Annual Meeting (CD ROM), Washington, D.C.
Lu, P. and Tolliver, D. 2012. “Pavement treatment short-term effectiveness in IRI change using LTPP data”. J. Transport. Eng., 138(11): 1297-1302.
Mazari, M. and Rodriguez, D. D. 2016. “Prediction of pavement roughness using a hybrid gene expression programming-neural network technique”. J. Traffic Transport. Eng., 3(5): 448-455.
Mirzahosseini, M., Jiao, P., Barri, K., Riding, K. and Alavi, A. H. 2019. “New machine learning prediction models for compressive strength of concrete modified with glass cullet”. Eng. Comput., 36: 876-898.
Mohamed Jaafar, Z. F. B., Uddin, W. and Najjar, Y. 2016. “Asphalt pavement roughness modeling using the artificial neural network and linear regression approaches for LTPP Southern region”. Transportation Research Board 95th Annual Meeting, Washington, D.C.
Naseri, H., Jahanbakhsh, H., Moghadas Nejad, F. and Golroo, A. 2020. “Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages”. AUT J. Civ. Eng., 4(4). DOI: 10.22060/ajce.2019.16124.5569
Owolabi, A. O., Sadiq, O. M. and Abiola, O. S. 2012. “Development of performance models for a typical flexible road pavement in Nigeria”. Int. J. Traffic Transport Eng., 2(3): 178-184.
Shahin, M. Y. 1994. “Pavement maintenance management for airports, roads, and parking lots”. Chapman & Hall, New York.
Shirzadi Javid, A. A., Naseri, H. and Etebari Ghasbeh, M. A. 2020. “Estimating the optimal mixture design of concrete pavements using a numerical method and meta-heuristic algorithms”. Iran. J. Sci. Tech.-Trans. Civ. Eng., 45: 913-927.
Storn, R. and Price, K. 1997. “Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces”. TR-95-012, 1995 [Online]. Available: http://http.icsi.berkeley.edu/~storn/litera.html.
Varadarajan, M. and Swarup, K. S. 2008. “Differential evolutionary algorithm for optimal reactive power dispatch”. Electr. Power Energy Syst., 30: 435-441.
Wang, K. C. P., Li, Q., Hall, K. D. and Elliott, R. P. 2007. “Experimentation with Gray theory for pavement smoothness prediction”. Transport. Res. Record, 1990: 3-13.
Ziari, H., Sobhani, J., Ayoubinejad, J. and Hartmann, T. 2016. “Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods”. Int. J. Pavement Eng., 17(9): 776-788.