Document Type : Research Paper
Authors
1 Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
2 Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Abstract
Keywords
Main Subjects
Aditya Satrio, C. B., W. Darmawan, B. U. Nadia, and N. H. (2021). Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science 179:524–32. doi:10.1016/J.PROCS.2021.01.036.
Aflaki, S., & Tabatabaee, N. (2009). Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran. Construction and Building Materials, 23(6), 2141–2150. https://doi.org/10.1016/j.conbuildmat.2008.12.014
Arslan, S. (2022). A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data. PeerJ Computer Science 8:e1001. doi:10.7717/peerj-cs.1001.
Bahia, H.U., Anderson, D. A. (1993). The pressure ageing vessel (PAV): a test to simulate rheological changes due to field ageing. In: Physical Properties of Asphalt Cement Binders Symposium, Dallas, 1993.
Edenhofer O, Pichs-Madruga R, Sokona Y, Kadner S, Minx JC, Brunner S, et al. (2014). Technical Summary. In: Climate Change 2014: Mitigation of Climate Change. Contrib Work Gr III to Fifth Assess Rep Intergov Panel Clim Chang. 33–107.
Francesco Viola, C. C. (2015). Effect of climate change on asphalt binder selection for road construction in Italy (pp. 40–47). https://doi.org/http://dx.doi.org/10.1016/j.trd.2015.04.012
Jagannathan, J., & Divya, C. (2021). Time Series Analyzation and Prediction of Climate using Enhanced Multivariate Prophet. International Journal of Engineering Trends and Technology, 69(10), 89–96. https://doi.org/10.14445/22315381/IJETT-V69I10P212.
JT, H. (2003). Climate change: causes, effects, and solutions. John Wiley & Sons.
Kennedy TW, Huber GA, Harrigan ET, Cominsky RJ, Hughes CS, Von Quintus H, et al. (1994). Superior performing asphalt pavements (Superpave): The product of the SHRP asphalt research program.
Ma, L., et al. (2021). Comprehensive review on the transport and reaction of oxygen and moisture towards coupled oxidative ageing and moisture damage of bitumen. Construction and Building Materials, 283, 122632.
Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza, A., Moretti, C., & Marconi, M. (2021). Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices. In Forecasting (Vol. 3, Issue 3, pp. 644–662). https://doi.org/10.3390/forecast3030040
Mohammad Daffa Haris, Didit Adytia, A. W. R. (2022). 2022 International Conference on Data Science and Its Applications (ICoDSA) | 978-1-6654-8665-1/22/$31.00 ©2022 IEEE |. https://doi.org/DOI:10.1109/ICoDSA55874.2022.9862869.
RMTO. (2022). Iran’s Road Maintenance and Transportation Organization (RMTO). Retrieved from http://www.rmto.ir.
S.A. Tabatabaie, H. Z. and M. K. (2008). Modeling Temperature and Resilient Modulus of Asphalt Pavements for Tropic Zones of Iran. Asian Journal of Scientific Research, 1. pp, 577-588. https://doi.org/10.3923/ajsr.2008.579.588
Sedighian-Fard M, S. N. (n.d.). Analysis of Regression-Based Models for Prediction of Depth Temperature of Asphalt Layers-A review. Amirkabir J. Civil Eng., 3985-4006.
Sepaspour. R, Hajikarimi. P, M. F. (2021). Investigating the effect of global warming on the functional classification of bitumens using Time series method. The 13th Bitumen, Asphalt & Machinery Conference & Exhibition, 9-11 November 2021 -Roads, Hous.
T., S. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
Thiyagarajan, Karthick; kodagoda, sarath; Ulapane, Nalika; prasad, M. (2020). A Temporal Forecasting Driven Approach Using Facebook’s Prophet Method for Anomaly Detection in Sewer Air Temperature Sensor System. TechRxiv. Preprint.
Toni Toharudin , Resa Septiani Pontoh , Rezzy Eko Caraka , Solichatus Zahroh, Y. L. & R. C. C. (2021). Employing long short-term memory and Facebook prophet model in air temperature forecasting, Communications in Statistics - Simulation and.
Vishwas, B., and A. Patel. 2020. Hands-on Time Series Analysis with Python. From Basics to Bleeding Edge Techniques. Berkeley, CA: Apress. doi: 10.1007/978-1-4842-5992-4. (n.d.).
Yenidogan, I., A. Cayir, O. Kozan, T. Dag, and C. A. (2018). Bitcoin forecasting using ARIMA and PROPHET. UBMK 2018 - 3rd International Conference on Computer Science and Engineering, 621–24. 10.1109/UBMK.2018. 8566476.
Zar Zar Oo, S. P. (2020). Time Series Prediction Based on Facebook Prophet: A Case Study, Temperature Forecasting in Myintkyina. International Journal of Applied Mathematics, Electronics and Computers, 8(4), 263–267.