Abu Abdo, A., Bayomy, F., Nielsen, R., Weaver, T. and Jung, S. J. 2009. “Prediction of the dynamic modulus of Superpave mixes”. Proc. 8th Int. Conf. Bearing Capacity Roads, Railways, Airfields, 305–314. DOI:
10.1201/9780203865286.ch33
Aksoy, A., Iskender, E. and Kahraman, H. T. 2012. “Application of the intuitive KNN estimator for prediction of the Marshall test (ASTM D1559) results for asphalt mixtures”. Constr. Build. Mater. 34: 561–569.
https://doi.org/10.1016/j.conbuildmat.2012.02.091
Al-Khateeb, G., Shenoy, A., Gibson, N. and Harman, T. 2006. “A new simplistic model for dynamic modulus predictions of asphalt paving mixtures”. J. Assoc. Asphalt Paving Technol., 75: 1254–1293. https://doi.org/10.1016/j.cscm.2022.e01580
Alnaqbi, A., Zeiada, W. and Al-Khateeb, G. G. 2024. “Machine learning modeling of pavement performance and IRI prediction in flexible pavement”. Innov. Infrastruct. Solut., 9: 385.
https://doi.org/10.1007 /s41062-024-01688-y
Andrei, D., Mirza, W. and Witczak, M. W. 1999. “Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures”. NCHRP Rep. 1-37A.
https://doi.org/10.4236/ojce.202 0.103018
Atakan, M. and Yıldız, K. 2023. “Prediction of Marshall design parameters of asphalt mixtures via machine learning algorithms based on literature data”. Road Mater. Pavement Design, 25(3): 454–473.
https://doi.org/10.1080/14680629.2023.2213774
Bajic, M., Pour, S. M., Skar, A., Pettinari, M., Levenberg, E. and Alstrøm, T. S. 2021. “Road roughness estimation using machine learning”. arXiv preprint arXiv:2107.01199.
https://doi.org/10.48550/arXiv.2 107.01199
Bari, J. and Witczak, M. W. 2006. “Development of a new revised version of the Witczak E* predictive model for hot mix asphalt mixtures”. J. Assoc. Asphalt Paving Technol., 75: 381–424. https://doi.org/10.1016/j.conbuildmat.2014.11.011
Beskopylny, A. N., Stelmakh, S. A., Shcherban, E. M., Mailyan, L. R., Meskhi, B., Razveeva, I., Chernilnik, A. and Beskopylny. N. 2022. “Concrete strength prediction using machine learning methods”. Appl. Sci., 12: 10864.
https://doi.org/10.3390/app122110864
Biligiri, K. P., Kaloush, K. and Uzan, J. 2010. “Evaluation of asphalt mixtures’ viscoelastic properties using phase angle relationships”. Int. J. Pavement Eng., 11(2): 143–152.
https://doi.org/10.1080/102984309030 33354
Birgisson, B., Roque, R., Kim, J. and Pham, L. V. 2004. “The use of complex modulus to characterize the performance of asphalt mixtures and pavements in Florida”. University of Florida. https://doi.org/10.1080/14680629.2018.1441065?urlappend=%3Futm_source%3Dresearchgate.net%26medium%3Darticle
Botella, R., Lo Presti, D., Vasconcelos, K., et al. 2022. “Machine learning techniques to estimate the degree of binder activity of reclaimed asphalt pavement”. Mater. Struct., 55: 112.
https://doi.org/10.1617 /s11527-022-01933-9
Christensen, D. W., Pellinen, T. and Bonaquist, R. F. 2003. “Hirsch model for estimating the modulus of asphalt concrete”. J. Assoc. Asphalt Paving Technol., 72: 97–121.
https://doi.org/10.1061/(ASCE)MT.19 43-5533.0002099
Choi, H. J. , Kim, S., Kim, Y. and Won, J. 2022. “Predicting frost depth of soils in South Korea using machine learning”. Sustain., 14: 9767.
https://doi.org/10.3390/su14159767
Dhar, V. and Stein, R. 1997. “Intelligent decision support methods”. Prentice-Hall, Upper Saddle River, N. J. https://doi.org/10.1007/978-1-4615-1147-2_7
Flintsch, G., Loulizi, A., Diefenderfer, S. D., Galal, K. A. and Diefenderfer, B. K. 2007. “Asphalt materials characterization in support of M-E PDG implementation”. Rep. VTRC 07-CR10, Virginia Tech. https://doi.org/10.3141/2057-14
Ghorbani, B., Yaghoubi, E., Wasantha, P. L. P., van Staden, R., Guerrieri, M. and Fragomeni, S. 2023. “Machine learning-based prediction of resilient modulus for blends of tire-derived aggregates and demolition wastes”. Road Mater. Pavement Design, 25(4): 694–715. https://doi.org/10.1080/14680629. 2023.2222176
Leiva-Villacorta, F. and Vargas-Nordcbeck, A. 2019. “Neural network-based model to estimate dynamic modulus E*”. J. Soft Comput. Civ. Eng., 3(2): 1–15. https://doi.org/10.1016/j.jrmge.2019.03.005
Majidifard, H., Jahangiri, B., Buttlar, W. G. and Alavi, A. H. 2019. “New ML-based prediction models for fracture energy”. Measurement, 135: 438–451. https://doi.org/10.1016/j.measurement.2018.11.081
Martínez, F. and Angelone, S. 2010. “The estimation of the dynamic modulus using ANN”. 11th Int. Conf. Asphalt Pavements, Vol. 1, 354–363. https://doi.org/10.1016/j.conbuildmat.2020.119912
Naik, A. K. and Biligiri, K. P. 2014. “Predictive models to estimate phase angle”. J. Mater. Civ. Eng., 27(8). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001197
Picado-Santos, L., Capitao, S. D. and Pais, J. C. 2003. “Stiffness modulus and phase angle prediction models for high modulus bituminous mixtures”. Int. J. Pavements, 2(3).
https://doi.org/10.1016/j.conbuildmat .2018.09.160
Rahman, S., Bhasin, A. and Smit, A. 2021. “Exploring ML to predict asphalt mixture performance”. Constr. Build. Mater., 295: 123585. https://doi.org/10.1016/j.conbuildmat.2021.123585
Rondinella, F., Daneluz, F., Hofko, B. and Baldo, N. 2024. “ML approach for simultaneous prediction of E* and phase angle”. Adv. Res. Technol. Inf. Innov. Sustain., 1935. https://doi.org/10.1007/978-3-031-48858-0_40
Seman, G., Shoop, S., McGrath, S. and Rollings, R. 2006. “Soil strength prediction with KNN”. Proc. 59th Can. Geotech. Conf. https://doi.org/10.1177/03611981241245679
Shu, X. and Huang, B. 2009. “Predicting dynamic modulus with differential method”. Road Mater. Pavement Design, 10(2): 337–359. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001048
Singh, D., Zaman, M. and Commuri, S. 2011. “Evaluation of predictive models for estimating dynamic modulus”. Transp. Res. Record, 2210: 57–72.
https://doi.org/10.3141/2210-07?urlappend=%3Futm_sou rce%3Dresearchgate.net%26medium%3Darticle
Suleymanov, A., Tuktarova, I., Belan, L., et al. 2023. “Spatial prediction of soil properties using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia”. Model. Earth Syst. Environ., 9: 3461–3471. https://doi.org/10.1007/s40808-023-01723-4
Tangga, A. A., Al Mufargi, H., Milad, A., et al. 2024. “Utilising machine learning algorithms to predict the Marshall characteristics of asphalt pavement layers”. Innov. Infrastruct. Solut. 9: 381. https://doi.org/10.1007/s41062-024-01698-w
Upadhya, A., Thakur, M. S. and Sihag, P. 2024. “Predicting Marshall stability of carbon fiber–reinforced asphalt concrete”. Int. J. Pavement Res. Technol., 17: 102–122. https://doi.org/10.1007/s42947-022-00223-5
Useche-Castelblanco, J. S., Reyes-Ortiz, O. J. and Alvarez, A. E. 2023. “Application of ML models for wax-modified asphalt binders”. Constr. Build. Mater., 395: 132352.
https://doi.org/10.1016/j.conbuildmat.202 3.132352
Uwanuakwa, I. D., Busari, A., Ali, S. I. A., et al. 2022. “Comparing ML models with Witczak NCHRP 1-40D model”. Arab. J. Sci. Eng., 47: 13579–13591. https://doi.org/10.1007/s13369-022-06935-x
Venudharan, V. and Biligiri, K. P. 2015. “Estimation of phase angles using resilient modulus test”. Constr. Build. Mater., 82: 274–286. https://doi.org/10.1016/j.conbuildmat.2015.02.061
Weiss, S. M. and Kulikowski, C. A. 1991. “Computer systems that learn”. Morgan Kaufmann Publ., San Mateo, CA. https://doi.org/10.1016/S0957-4174(02)00026-X
Witczak, M. W. 2005. “NCHRP Proj. 9-19, Superpave support and performance models management”. Final Rep. https://doi.org/10.1051/matecconf/201712007003
Witczak, M. W. and Fonseca, O. A. 1996. “Revised predictive model for dynamic (complex) modulus”. Transp. Res. Record, 1540(1): 15–23. https://doi.org/10.1177/0361198196154000103
Yang, X. and You, Z. 2015. “New predictive equations for dynamic modulus and phase angle using nonlinear least-squares regression”. J. Mater. Civ. Eng., 27(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001070
Zhang, C. and Shen, S. 2017. “Modification of the Hirsch dynamic modulus prediction model”. J. Mater. Civ. Eng., 29(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002099