Optimum Selection Method of Bitumen and Amorphous Carbon Powder Mixture by Contact Angle Test and Further Investigation of Carbon Powder Influence on Moisture Susceptibility of Hot Mix Asphalt

Document Type : Research Paper


1 Professor, Research Center of Bitumen and Asphalt Mixtures, Iran University of Science and Technology, Tehran, Iran.

2 Assistant Professor of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.

3 Assistant Professor, Islamic Azad University, Nowshahr Branch, Nowshahr, Iran.

4 Assistant Professor, Advanced Sciences and Technology, University of Isfahan, Isfahan, Iran.


Asphalt pavements expose to failure due to various reasons. Moisture failures are the most crucial failures so far. Numerous methods have been carried out to increase asphalt mixtures resistance, one of which is using additives in bitumen or asphalt. This paper intends to determine the effect of amorphous carbon powder on HMAs in order to decrease moisture susceptibility. At the beginning, optimized mixing method of bitumen and carbon powder has evaluated by contact angle test. Carbon powder is utilized in 2 different ways; as additive to bitumen (in weight percentages of 5, 10 and 15) or directly replaced by filler in 25, 50, 75 and 100 percent of mass of filler. Following tests were conducted to study and understand the effect of this powder; proportion of tensile strength in wet and dry conditions based on AASHTO T283, and boiling water test in ASTM D362d. The results of both tests indicate that amorphous carbon powder play an effective role in decreasing the moisture susceptibility of asphalt mixtures. Moreover, replacing this powder by filler shows a much better performance compared to bitumen. Amorphous carbon powder because of its hydrophobicity can be effective to avoid water penetration into asphalt mixture and decrease its moisture susceptibility.


زیاری، ح.، دیواندری، ح. و یاوری، ع. م. 1395. "تأثیر افزودنی آهک هیدراته بر پارامترهای عملکردی مخلوط آسفالتی نیمه­گرم (WMA)". مهندسی زیرساخت‌های حمل­ونقل، 2(1): 1-16.
زیاری، ح.، میرزابابایی، پ.، باباگلی، ر. و منیری، ع. 1394. "تأثیر نوع مصالح بر خواص عملکردی آسفالت نیمه­گرم اصلاح شده با زایکوترم". مهندسی زیرساخت‌های حمل­ونقل، 1(3): 63-76.
مدرس، ا. و رحمان زاده، م. 1394. تأثیر فیلر زغال سنگ ضایعاتی و خاکستر آن بر مقاومت و دوام مخلوط آسفالت گرم در مقایسه با پودر سنگ آهک. مهندسی زیرساخت‌های حمل­ونقل، 1(1): 55-65.
Abuawad, I. M., Al-Qadi, I. L. and Trepanier, J. S. 2015. “Mitigation of moisture damage in asphalt concrete: Testing techniques and additives/modifiers effectiveness”. Constr. Build. Mater., 84: 437-443.
Amelian, S., Abtahi, S. M. and Hejazi, S. M. 2014. “Moisture susceptibility evaluation of asphalt mixes based on image analysis”. Constr. Build. Mater., 63: 294-302.
Barthlott, W. and Neinhuis, C. 1997. “Purity of the sacred lotus, or escape from contamination in biological surfaces”. Planta, 202(1): 1-8.
Bausano, J. and Williams, R. C. 2009. “Transitioning from AASHTO T283 to the simple performance test using moisture conditioning”. J. Mater. Civil Eng., 21(2): 73-82.
Behiry, A. E. A. E. M. 2013. “Laboratory evaluation of resistance to moisture damage in asphalt mixtures”. Ain Shams Eng. J., 4(3): 351-363.
Chen, J., Wu, S., Pang, L., Chen, Z., Xie, J. and Lei, M. 2014. “Influence of flue gas desulphurisation ash on moisture damage in asphalt mixtures”. Mater. Res. Innov., 18(S4): S4-81-S4-86.
Dehnad, M., Khodaii, A. and Moghadas Nejad, F. 2013. “Moisture sensitivity of asphalt mixtures under different load frequencies and temperatures”. Constr. Build. Mater., 48: 700-707.
Gorkem, C. and Sengoz, B. 2009. “Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime”. Constr. Build. Mater., 23(6): 2227-2236.
Grenfell, J., Ahmad, N., Liu, Y., Apeagyei, A., Large, D. and Airey, G. 2014. “Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage”. Road Mater. Pavement Design, 15(1): 131-152.
Huang, B., Shu, X., Dong, Q. and Shen, J. 2010. “Laboratory evaluation of moisture susceptibility of hot-mix asphalt containing cementitious fillers”. J. Mater. Civil Eng., 22(7): 667-673.
Kavussi, A., Qorbani, M., Khodaii, A. and Haghshenas, H. 2013. “Quantification of parameters affecting moisture resistance of warm mix asphalt using response surface methodology”. International Journal of Pavements Conference (IJPC), Brazil.
Kim, Y. R., Lutif, J. S., Bhasin, A. and Little, D. N. 2008. “Evaluation of moisture damage mechanisms and effects of hydrated lime in asphalt mixtures through measurements of mixture component properties and performance testing”. J. Mater. Civil Eng., 20(10): 659-667.
Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L. and Zhu, D. 2003. “Electrochemical deposition of conductive superhydrophobic zinc oxide thin films”. The J. Phys. Chem. B, 107(37): 9954-9957.
Moazzam, P., Razmjou, A., Golabi, M., Shokri, D. and Landarani-Isfahani, A. 2016. “Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure”. J. Biomed. Mater. Res. A, 104(9): 2220-2233.
Moghadas Nejad, F., Azarhoosh, A., Hamedi, G. H. and Azarhoosh, M. 2012. “Influence of using nonmaterial to reduce the moisture susceptibility of hot mix asphalt”. Constr. Build. Mater., 31: 384-388.
Robertson, J. and O’Reilly, E. P. 1987. “Electronic and atomic structure of amorphous carbon”. Phys. Rev. B, 35(6): 2946.
Tarefder, R. A. and Ahmad, M. 2014. “Evaluating the relationship between permeability and moisture damage of asphalt concrete pavements”. J. Mater. Civil Eng., 27(5).
Wasiuddin, N. M., Fogle, C. M., Zaman, M. M. and O’Rear, E. A. 2007. “Effect of antistrip additives on surface free energy characteristics of asphalt binders for moisture-induced damage potential”. J. Test. Eval., 35(1): 36-44.
Yan, Y., Gao, N. and Barthlott, W. 2011. “Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces”. Adv. Colloid Interface Sci., 169(2): 80-105.