ACI Committee. 1997. “State-of-the-art report on soil cement”. ACI Mater. J., 87(4): 395-417.
Alavi, A. and Gandomi, A. 2011. “A robust data mining approach for formulation of geotechnical engineering systems”. Eng. Comput., 28(3): 242-274.
Alavi, A. H., Gandomi, A. H. and Mollahasani, A. 2012. “A genetic programming-based approach for the performance characteristics assessment of stabilized soil”. PP. 343-376. In: Variants of Evolutionary Algorithms for Real-World Applications, Springer, Berlin.
Al-Dabbas, M. A., Schanz, T. and Yassen, M. J. 2012. “Proposed engineering of gypsiferous soil classification”. Arab. J. Geosci., 5(1): 111-119.
Ardakani, A. and Kordnaeij, A. 2017. “Soil compaction parameters prediction using GMDH-type neural network and Genetic Algorithm”. Eur. J. Environ. Civ. Eng., doi.org/10.1080/19648189.2017.1304269.
Das, B. M. 1990. “Principle of foundation engineering”. PWS-KENT, Boston.
Das, S. K., Samui, P. and Sabat, A. K. 2011. “Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil”. Geotech. Geol. Eng., 29(3): 329-342.
Ferreira, C. 2001. “Gene expression programming: A new adaptive algorithm for solving problems”. Complex Syst., 13(2): 87-129.
GeneXpro Tools 4.0 [Computer software]. 2006. Gepsoft Ltd., Bristol, UK.
Goharriz, M. and Marandi, S. M. 2016. “An optimized neuro-fuzzy group method of data handling system based on gravitational search algorithm for evaluation of lateral ground displacement”. Int. J. Optim. Civ. Eng., 6(3): 385-403.
Güllü, H. 2014. “Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash”. Eng. Appl. Artif. Intel., 35: 143-157.
Javadi, A. A. and Rezania, M. 2009. “Applications of artificial intelligence and data mining techniques in soil modeling”. Geomech. Eng., 1(1): 53-74.
Javdanian, H., Haddad, A. and Jafarian, A. 2015. “Evaluation of dynamic behavior of fine-grained soils using group method of data handling”. J. Transport. Infrastruct. Eng., 1(3): 77-92.
Khandelwal, M. and Singh, T. N. 2011. “Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach”. Arab. J. Geosci., 4(3-4): 435-442.
Kogbara, R. B. and Al-Tabbaa, A. 2011. “Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil”. Sci. Total Environ., 409(11): 2325-2335.
Kordnaeij, A., Kalantary, F., Kordtabar, B. and Mola-Abasi, H. 2015. “Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties”. Soils Found., 55(6): 1335-1345.
Madandoust, R., Ghavidel, R. and Nariman Zadeh, N. 2010. “Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV”. Comput. Mater. Sci., 49(3): 556-567.
Mallela, J., Quintus, H. V. and Smith, K. 2004. “Consideration of lime-stabilized layers in mechanistic-empirical pavement design”. The National Lime Association, pp. 200-208.
Motamedi, S., Shamshirband, S., Petković, D. and Hashim, R. 2015a. “Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture”. Powder Technol., 278: 278-285.
Motamedi, S., Shamshirband, S., Hashim, R., Petković, D. and Roy, C. 2015b. “RETRACTED-Estimating unconfined compressive strength of cockle shell–cement–sand mixtures using soft computing methodologies”. Engineering Structures, 98, 49-58.
Mozumder, R. A., Laskar, A. I. and Hussain, M. 2017. “Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines”. Constr. Build. Mater., 132: 412-424.
Najafzadeh, M. 2015. “Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures”. Eng. Sci. Technol., 18(1): 42-51.
Najafzadeh, M., Barani, G. A. and Azamathulla, H. M. 2013. “GMDH to predict scour depth around a pier in cohesive soils”. Appl. Ocean Res., 40: 35-41.
Nelson, J. and Miller, D. J. 1997. “Expansive soils: Problems and practice in foundation and pavement engineering”. John Wiley and Sons.
Sathyapriya, S., Arumairaj, P. D. and Ranjini, D. 2017. “Prediction of unconfined compressive strength of a stabilised expansive clay soil using ANN and regression analysis (SPSS)”. Asian J. Res. Social Sci. Human., 7(2): 109-123.
Suman, S., Mahamaya, M. and Das, S. K. 2016. “Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques”. Int. J. Geosynth. Ground Eng., 2(2): 1-11.
Tabatabaei, A. M. 1997. “Road and airport pavement”. University Publication Center, Tehran. (In Persian).
Yang, Y., and Zhang, Q. (1997). A hierarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering, 30(4): 207-222.
Zhang, H., Liu, X., Cai, E., Huang, G. and Ding, C. 2013. “Integration of dynamic rainfall data with environmental factors to forecast debris flow using an improved GMDH model”. Comp. Geosci., 56: 23-31.
Ziari, H., Sobhani, J., Ayoubinejad, J. and Hartmann, T. 2016. “Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods”. Int. J. Pavement Eng., 17(9): 776-788.