AASHTO TP95. 2014. “Standard method of test for surface resistivity indication of concrete’s ability to resist chloride ion penetration”. American Association of State Highway and Transportation Officials.
American Concrete Institute. 2013. Concrete Technology. ACI CT-13, 78.
ASTM C109. 2016. “Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens)”. ASTM International, West Conshohocken, Pennsylvania, USA.
Chandrappa, A. K. and Biligiri, K. P. 2016. “Pervious concrete as a sustainable pavement material–Research findings and future prospects: A state-of-the-art review”. Constr. Build. Mater., 111: 262-274.
Chen, Y., Zhang, Q. S. and Gao, Y. L. 2010. “Experiment on mechanical performances of porous cement concrete applied to surface layer of highway pavement”. China J. Highway Transport, 23(2): 18-24.
Ćosić, K., Korat, L., Ducman, V. and Netinger, I. 2015. “Influence of aggregate type and size on properties of pervious concrete”. Constr. Build. Mater., 78: 69-76.
Deo, O., 2011. “Influence of material structure on the structural and environmental properties of pervious concretes”. Doctoral Dissertation, Clarkson University.
Deo, O. and Neithalath, N. 2011. “Compressive response of pervious concretes proportioned for desired porosities”. Constr. Build. Mater., 25(11): 4181-4189.
Haselbach, L., Boyer, M., Kevern, J. T. and Schaefer, V. R. 2011. “Cyclic heat island impacts on traditional versus pervious concrete pavement systems”. Transport. Res. Record, 2240(1): 107-115.
Ibrahim, A., Mahmoud, E., Yamin, M. and Patibandla, V. C. 2014. “Experimental study on Portland cement pervious concrete mechanical and hydrological properties”. Constr. Build. Mater., 50: 524-529.
Kevern, J. T., Biddle, D. and Cao, Q. 2015. “Effects of macrosynthetic fibers on pervious concrete properties”. J. Mater. Civ. Eng., 27(9):.06014031.
Kuo, W. T., Liu, C. C. and Su, D. S. 2013. “Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement Concrete Comp. 37: 328-335.
Li, H., Kayhanian, M. and Harvey, J. T. 2013. “Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods”. J. Environ. Manag., 118: 144-152.
Millard, S. and Sadowski, L. 2009. “Novel method for linear polarisation resistance corrosion measurement”. NDTCE’09 Non-Destructive Testing in Civil Engineering Nantes, France, June 30th-July 3rd.
Neithalath, N., Weiss, J. and Olek, J. 2006. ‘Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance”. Cement Concrete Res., 36(11): 2074-2085.
Olek, J., Weiss, W. J., Neithalath, N., Marolf, A., Sell, E. and Thornton, W. 2003. “Development of quiet and durable porous Portland cement concrete paving materials”. No. SQDH 2003-5, Purdue University.
Sengul, O. and Gjørv, O. E. 2008. “Electrical resistivity measurements for quality control during concrete construction”. ACI Mater. J., 105(6): 541.
Tennis, P. D., Leming, M. L. and Akers, D. J. 2004. “Pervious concrete pavements (No. PCA Serial No. 2828)”. Portland Cement Association, Skokie, IL.
Tumidajski, P. J. 1996. “Electrical conductivity of Portland cement mortars”. Cement Concrete Res., 26(4): 529-534.
Wen, S. and Chung, D. D. L. 2001a. “Electric polarization in carbon fiber-reinforced cement”. Cement Concrete Res., 31(1): 141-147.
Wen, S. and Chung, D. D. L. 2001b. “Effect of stress on the electric polarization in cement”. Cement Concrete Res., 31(2): 291-295.
Wen, S. and Chung, D. D. L. 2006. “The role of electronic and ionic conduction in the electrical conductivity of carbon fiber-reinforced cement”. Carbon, 44(11): 2130-2138.
Xu, L. and Qun, Y. 2013. “Impact analysis of porous concrete overlay timing on tunnel pavement”. J. East China Jiaotong Univ.