Comparison of modulus-elasticity of pavement alkali-activated concrete and normal concrete under high temperature Based on XRD and SEM test

Document Type : Research Paper


1 Ph.D. in Civil Engineering, Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran

2 Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran


In recent decades, the use of alkaline materials in concrete has found a wide perspective in the concrete industry due to its pozzolanic properties and the presence of aluminosilicate materials with high filling and adhesion properties. The use of this type of concrete (due to its superior advantages over ordinary concrete) in paving roads can improve the strength and increase the useful life of roads. In this laboratory research, a mixture ratio of normal concrete with a cement grade of 450 kg/m3 was made. A mixture ratio was also made of activated alkali concrete based on blast furnace slag to compare and evaluate the modulus of elasticity of concrete under ambient temperature and heat of 500 ℃, at the age of 90 days. Next, X-ray Diffraction Spectroscopy (XRD) and Scanning Electron Microscope (SEM) tests were carried out in order to further investigate and verify the results of the modulus of elasticity test, at the processing age of 90 days at ambient temperature and It was done on concrete samples under the heat of 500 ℃. The modulus of elasticity at ambient temperature was 32 GPa for ordinary concrete and 35 GPa for activated alkali concrete, which had a difference of 8%. By applying heat to concrete samples, the amount of modulus of elasticity drop in normal concrete reached 59% and in activated alkali concrete 42%. The results of the XRD and SEM tests were in agreement with each other and overlapped with the results of the modulus of elasticity test.


Main Subjects

Abdulkareem, O. A.,  Al Bakria, A. M. M., Kamarudin, H., Khairul Nizar, I. and Saif, A. A. 2014. “Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete”. Constr. Build. Mater., 50: 377-387.
Allahverdi, A. L. I., Najafi Kani, E. and Yazdanipour, M. 2011. “Effects of blast-furnace slag on natural pozzolan-based geopolymer cement”. Ceramics-Silikáty, 55(1): 68-78.‏
Amouzadeh Omrani, M. and Hasirchian, M. 2020. “Assessing the effect of steel slag and reclaimed asphalt pavement on mechanical properties and pollution of roller compacted concrete pavement”. J. Transport. Infrastruct. Eng., 6(2): 87-108. 10.22075/jtie.2020.19754.1444
Aslani, F. 2016. “Thermal performance modeling of geopolymer concrete”. J. Mater. Civ. Eng., 28(1): 04015062.
Badkul, A., Paswan, R., Singh, S. K. and Tegar, J. P. 2022. “A comprehensive study on the performance of alkali activated fly ash/GGBFS geopolymer concrete pavement”. Road Mater. Pavement Design, 23(8): 1815-1835.‏
Bentz, D. P. 2000. “Fibers, percolation, and spalling of high-performance concrete”. Mater. J., 97(3): p. 351-359.
Davidovits, J. 1988. “Soft mineralurgy and geopolymers”. Proc. 1st International Conference on Geopolymers,  pp. 19-21.
Davidovits, J. 1994. “Geopolymers: Man made rocks, geosynthesis and the resulting development of very early high strength cements”. J. Mater. Educ., 16: 91-139.
Deb, P., Nath, P. and Sarker, P. 2015. “Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature”. Proc. Eng., 125: 594-600.
Du, H., Du, S. and Liu, X. 2014. “Durability performances of concrete with nano-silica”. Constr. Build. Mater., 73: 705-712.
Duan, P., Shui, Z., Chen, W. and Shen, C. 2013. “Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials”. J. Mater. Res. Technol., 2(1): 52-59.
Ehsani, A., Nili, M. and Shaabani, K. 2017. “Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing fly ash”. KSCE J. Civ. Eng., 21(5): 1854-1865.
Eisa, M. S., Fahmy, E. A. and Basiouny, M. E. 2022. “Using metakaolin-based geopolymer concrete in concrete pavement slabs”. Innov. Infrastruct. Solut., 7(1): 1-11.‏
Hashimoto, M., Sakata, N. Sakai, E. Yonezawa, T. Hayashi D. and Muronoi, T. 2016. “Study on concrete for civil engineering structures using high volume blast furnace slag cement”. J. Adv. Concrete Technol., 14(4): 163-171.
Kong, D. L. and Sanjayan, J. G. 2010. “Effect of elevated temperatures on geopolymer paste, mortar and concrete”. Cement Concrete Res., 40(2): 334-339.
Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A. (2021). Evaluate Effect of Temperature On mechanical properties of Geopolymer Concretes blast furnace slag by using nanosilica and polyolefin fiber. Journal of Structural and Construction Engineering, 8(10), 334-352.
Mansourghanaei, M., Biklaryan, M. and Mardookhpour, A. 2022. “Experimental study of the effect of high temperature on the passage speed of Ultrasonic Pulse Velocity (UPV) in alkaline slag concrete used in pavement”. J. Transport. Infrastruct. Eng., 8(1): 119-131.
Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A. (2022). Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete. Australian Journal of Civil Engineering, 1-13. DOI: 10.1080/14488353.2022.2120247
Mansourghanaei, M. (2022). Experimental evaluation of compressive, tensile strength and impact test in blast furnace slag based geopolymer concrete, under high temperature. Journal of Civil Engineering Researchers, 4(2), 12-21. DOI: https//
Mansourghanaei, M. (2022). Experimental study of compressive strength, permeability and impact testing in geopolymer concrete based on Blast furnace slag. Journal of Civil Engineering Researchers4(3), 31-39.‏
Mehdipour, S., Nikbin, I. M., Dezhampanah, S., Mohebbi, R., Habibi Moghadam, H., Chakhtab, S. and Moradi, A. 2020. “Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures”. J. Clean. Prod., 254: 120126.
Mustakim, S., Das, S. K., Mishra, J., Aftab, A., Alomayri, T., Assaedi, H. and Kaze, C. R. 2020. “Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica”. Silicon, 13: 2415-2428.
Neupane, N., Chalmers, D. and Kidd, P. 2018. “High-strength geopolymer concrete properties: Advantages and challenges”. Adv. Mater., 7(2): 15-25.
Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M., Marto, A. and Khorami, M. 2018. “Portland cement structure and its major oxides and fineness”. Smart Struct. Syst., 22(2): 425-432.
Patel, J., Gupta, N., Chouhan, R. K. and Mudgal, M. 2022. “Structural behavior of fly ash–based geopolymer for roller-compacted concrete pavement”. J. Mater. Civ. Eng., 34(11): 04022300.‏
Phair, J. W. and Van Deventer, J. S. 2002. “Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers”. Int. J. Min. Process., 66(1-4): 121-143.
Prakasam, G., Ramachandra Murthy, A., Sundar Kumar, S., Saffiq Reheman, M. M. and Iyer, N. R. 2016. “Effect of nanosilica on durability and mechanical properties of high-strength concrete”. Mag. Concrete Res., 68(5): 229-236.
Rahman, S. S. and Khattak, M. J. 2022. “Feasibility of reclaimed asphalt pavement geopolymer concrete as a pavement construction material”. Int. J. Pavement Res. Technol. .‏
Rashad, A. M. 2019. “The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties”. Mater. Sci. Technol., 35(2): 127-146.
Ryu, G. S., Lee, Y. B., Koh, K. T. and Chung, Y. S. 2013. “The mechanical properties of fly ash-based geopolymer concrete with alkaline activators”. Constr. Build. Mater., 47: 409-418.
Shafabakhsh, G. and Mohammadi Janaki, A. 2021. “Evaluation of mechanical properties and durability of geopolymer concrete pavement fly ash and siflica fume”. Quarterly J. Transport. Eng., 12(4): 855-872.
Siddique, R. and Kaur, D. 2012. “Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures”. J. Adv. Res., 3(1): 45-51.
Singh, S., Sharma, S. K. and Akbar, M. A. 2022. “Developing zero carbon emission pavements with geopolymer concrete: A comprehensive review”. Transport. Res., Part D: Transport Environ., 110: 103436.‏
Srividya, T., Kannan Rajkumar, P. R., Sivasakthi, M., Sujitha, A. and Jeyalakshmi, R. 2022. “A state-of-the-art on development of geopolymer concrete and its field applications”. Case Stud. Constr. Mater., 16: e00812.‏
Their, J. M. and Özakça, M. 2018. “Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber”. Constr. Build. Mater., 180: 12-22.
Türkmen, İ.,  Maraş, M. M.,  Karakoç, M. B., Demi̇rboğa, R. and Kantarci, F. 2013. “Fire resistance of geopolymer concrete produced from ferrochrome slag by alkali activation method”. In: International Conference on Renewable Energy Research and Applications (ICRERA), IEEE.
Václavík, V., Dirner, V., Dvorský, T. and Daxner, J. 2012. “The use of blast furnace slag”. Metalurgija, 51(4): 461-464.
Wang, H., Li, H. and Yan, F. 2005. “Synthesis and mechanical properties of metakaolinite–based geopolymer”. Colloids Surf A: Physiochem. Eng. Aspects, 268: 1–6.
Zhang, B. and Bicanic, N. 2002. “Residual fracture toughness of normal-and high-strength gravel concrete after heating to 600 ℃”. Mater. J., 99(3): 217-226.