عملکرد حرارتی و دوام بتن ژئوپلیمری روسازی شده با الیاف پلی‌پروپیلن حاوی مصالح بازیافتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد رودهن، رودهن، ایران.

2 استادیار، گروه عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد رودهن، رودهن، ایران.

3 استادیار، گروه متالوژی و علم مواد، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد رودهن، رودهن، ایران.

چکیده

بتن ژئوپلیمری (GPC) به‌عنوان جایگزینی سازگار با محیط‌زیست برای بتن‌های سیمانی سنتی مورد توجه است. اما عملکرد آن در محیط‌های با دمای بالا و در شرایط عملیاتی نظیر روسازی‌ها نیازمند بهبود است. این پژوهش، با هدف بررسی بهبود عملکرد حرارتی و دوام GPC  در مواجهه با دماهای بالا انجام شد. در این مطالعه تجربی، از خاکستر بادی و متاکائولن به‌عنوان مواد اولیه در GPC ترکیبی دوتایی استفاده شد و اثر افزودن الیاف پلی‌پروپیلن (PP) با کسرهای حجمی مختلف (تا 5/1%) بر خواص مکانیکی و عملکرد حرارتی بتن، تحت شرایط دمایی متفاوت (دمای اتاق، 200، 500 و 800 درجه سلسیوس) بررسی شد. مقاومت فشاری نمونه‌ها در سنین 7 و 28 روز اندازه‌گیری شد و تحلیل واریانس (ANOVA) برای تعیین میزان تأثیر هر یک از عوامل بر مقاومت فشاری به کار گرفته شد. نتایج نشان داد که افزودن الیاف PP تا 5/0% مقاومت فشاری GPC را افزایش می‌دهد. مقدار بهینه جایگزینی خاکستر بادی با متاکائولن، 20% بود که در آن مقاومت فشاری نمونه‌ها بهبود قابل‌توجهی داشت. این پژوهش نشان داد که اختلاط الیاف پلی‌پروپیلن و استفاده از متاکائولن می‌تواند عملکرد حرارتی (مقاومت در برابر آتش) GPC ترکیبی دوتایی را بهبود بخشد و دوام آن را در کاربردهای روسازی در دماهای بالا تضمین کند. این یافته‌ها، راهکارهای عملی برای بهبود عملکرد GPC در دماهای بالا ارائه می‌دهد و زمینه را برای کاربردهای گسترده‌تر آن فراهم می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Thermal Performance and Durability of Pavement-Grade Geopolymer Concrete Reinforced with Polypropylene Fibers Containing Recycled Materials

نویسندگان [English]

  • Akbar Jooyandeh Mirza 1
  • Mohammad Hadi Alizadeh Eliyzei 2
  • Mohsen Adabi 3
1 Ph.D. Candidate, Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Roudehen, I. R. Iran.
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Roudehen, I. R. Iran.
3 Assistant Professor, Department of Metallurgy and Materials Science, Faculty of Engineering, Islamic Azad University, Roudehen, I. R. Iran.
چکیده [English]

Geopolymer concrete (GPC) is gaining attention as an environmentally friendly alternative to traditional cementitious concretes. However, its performance in high-temperature environments and in operational conditions such as pavements requires improvement. This research was conducted with the aim of investigating the enhancement of thermal performance and durability of GPC when exposed to elevated temperatures. In this experimental study, fly ash and metakaolin were utilized as precursor materials in a binary blended GPC, and the effect of adding Polypropylene (PP) fibers at various volume fractions (up to 1.5%) on the mechanical properties and thermal performance of the concrete was examined under different temperature conditions (room temperature, 200, 500, and 800 °C). Compressive strength of the specimens was measured at 7 and 28 days, and Analysis of Variance (ANOVA) was employed to determine the degree of influence of each factor on compressive strength. The results indicated that addition of PP fibers up to 0.5% increased the GPC’s compressive strength, and optimum replacement percentage for fly ash with metakaolin was 20%, where compressive strength of the specimens showed a significant improvement. This research demonstrated that incorporation of polypropylene fibers and using metakaolin can enhance the thermal performance (fire resistance) of binary blended GPC and ensure its durability in pavement applications at high temperatures. These findings offer practical solutions for improving the high-temperature performance of GPC, paving the way for its wider applications.

کلیدواژه‌ها [English]

  • Fire resistance
  • Geopolymer concrete
  • Metakaolin
  • Polypropylene fibers
 
Ahmadpour, M., Kiani, F. and Mazaheri, N. 2025. “Effect of polypropylene fibers on the mechanical properties of geopolymer concrete”. J.  Constr. Res., 30(4): 89-103.
Albitar, M., Mohamed Ali, M. S., Visintin, P. and Drechsler, M. 2015. “Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete”. Constr. Build. Mater., 83: 128-135.
Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F.  and Zeyad, A. M. 2021. “Potential applications of geopolymer concrete in construction: A review”. Case Stud. Constr. Mater., 15: e00733.
De Belie, N., Soutsos, M. and Gruyaert, E. 2018. “Properties of fresh and hardened concrete containing supplementary cementitious materials”. Springer.
El-Feky, M. S., Kohail, M., El-Tair, A. M. and Serag, M. I. 2020. “Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes”. Constr. Build. Mater., 233: 117268.
Erfanimanesh, A. and Sharbatdar, M. K. 2020. “Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate”. J.  Build. Eng., 32: 101781.
Gascón-Moreno, J., Salcedo-Sanz, S., Saavedra-Moreno, B., Carro-Calvo, L. and Portilla-Figueras, A. 2013. “An evolutionary-based hyper-heuristic approach for optimal construction of group method of data handling networks”. Inform. Sci., 247: 94–108.
Halgh, S., Moghimi, M. and Hosseini, K. 2023. “Investigation of the effect of fly ash and metakaolin on the thermal and mechanical behavior of geopolymer concrete”. Int. J.  Concrete Struct., 25(2): 201-220.
Kanagaraj, B., Anand, N., Diana Andrushia, A., Kiran, T. and Lubloy, E. 2023a. “Pull-out behavior and microstructure characteristics of binary blended self-compacting geopolymer concrete subjected to elevated temperature”. Alexandria Eng. J., 76: 469–490.
Kanagaraj, B., Anand, N., Jerry, R., Samuvel Raj, R. and Lubloy, E. 2023b. “Axial compressive behaviour and physical characteristics of high strength self-compacting geopolymer concrete (HSGC) columns exposed to elevated temperature”. Constr. Build. Mater., 401: 132866.
Kanagaraj, B., Anand, N., Raj, R. S. and Lubloy, E. 2023c. “Behavioural studies on binary blended high strength self compacting geopolymer concrete exposed to standard fire temperature”. Ain Shams Eng. J, 102394.
Lochab, B., Monisha, M., Amarnath, N., Sharma, P., Mukherjee, S. and Ishida, H. 2021. “Review on the accelerated and low‐temperature polymerization of benzoxazine resins: Addition polymerizable sustainable polymers”. Polym., 13(8): 1260.
Luhar, S., Chaudhary, S. and Luhar, I. 2019. “Development of rubberized geopolymer concrete: Strength and durability studies. Constr. Build. Mater., 204: 740-753.
Manjunath, R., Narasimhan, M. C. and Umesha, K. M. 2019. “Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures”. Constr. Build. Mater., 229: 116887.
Mao, Q., Li, Y., Liu, K., Peng, H. and Shi, X. 2022. “Mechanism, characterization and factors of reaction between basalt and alkali: Exploratory investigation for potential application in geopolymer concrete”. Cement Concrete Compos., 130: 104526.
McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A. and Corder, G. D. 2011. “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement”. J.  Clean. Prod., 19(9-10): 1080-1090.
Moradikhou, A. B., Esparham, A. and Jamshidi Avanaki, M. 2020. “Physical and mechanical properties of fiber reinforced metakaolin-based geopolymer concrete”. Constr. Build. Mater., 251: 118965.
Park, Y., Abolmaali, A., Kim, Y. H. and Ghahremannejad, M. 2016. “Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand”. Constr. Build. Mater., 118: 43-51.
Provis, J. L. 2018. “Alkali-activated materials”. Cement Concrete Res., 114: 40-48.
Saboori, R. and Borhani, A. 2024. “Thermal and fire challenges in geopolymer concrete: A comprehensive review”. J.  Build. Mater., 32(3): 115-130.
Tanyildizi, H. and Yonar, Y. 2016. “Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature”. Constr. Build. Mater., 126: 381-387.
Top, S., Vapur, H., Altiner, M., Kaya, D. and Ekicibil, A. 2020. “Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates”. J.  Molecul. Struct., 1202: 127236.
Türker, H. T., Balçikanli, M., Durmuş, I. H., Özbay, E. and Erdemir, M. 2016. “Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level”. Constr. Build. Mater., 104: 169-180.
Turner, L. K. and Collins, F. G. 2013. “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete”. Constr. Build. Mater., 43: 125-130.
Van Deventer, J. S. J., Provis, J. L., Duxson, P. and Brice, D. G. 2010. “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials”. Waste Biomass Valor, 1(1): 145-155.
Wang, Y., Aslani, F. and Valizadeh, A. 2020. “An investigation into the mechanical behaviour of fibre-reinforced geopolymer concrete incorporating NiTi shape memory alloy, steel and polypropylene fibres”. Constr. Build. Mater., 259: 119765.
Zeyad, A. M., Azmi Megat Johari, M., Abutaleb, A. and Tayeh, B. A. 2021. “The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete”. Constr. Build. Mater., 280: 122409.