کمّی‌سازی برگشت‌پذیری زیرساخت‌های شهری و کاربرد آن در انتخاب راهکارهای مقاوم‌سازی لرزه‌ای (مطالعه موردی: ایستگاه 15 خرداد متروی شیراز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده محیط زیست، پردیس دانشکده های فنی، دانشگاه تهران

2 کارشناس ارشد مدیریت در سوانح طبیعی - دانشکده محیط زیست - دانشگاه تهران

چکیده

ارزیابی برگشت‌پذیری در برابر سوانح به‌عنوان یک ابزار تصمیم‌گیری می­تواند توسط مدیران بحران مورد توجه قرار گیرد. وارد کردن زمان احیا در روند تصمیم­گیری­های فاز آمادگی، باعث تفاوت رویکرد برگشت‌پذیری از دیگر رویکردهای تخمین خسارت و اثرهای وابسته به زمان آن‌ها می‏شود. فرایند احیا بعد از وقوع سوانح می‌تواند توسط توابع احیای ساده ‌شده یا مدل­های اجتماعی- سازمانی پیچیده تخمین زده شود. نکته بارز، استفاده از رویکرد برگشت‌پذیری آن است که می­تواند به مدیران بحران دورنمایی از روند احیای شریان­های حیاتی بعد از سوانح، با توجه به عامل تعیین‌کننده زمان، بدهد تا امکانات موجود را بر اساس معیار برگشت‌پذیری تخصیص دهند. در حال حاضر، راهکارهای مقاوم­سازی شریان­های حیاتی، به‌خصوص ایستگاه‌های مترو، به‌وسیله معیارهای اقتصادی و فنی و با توجه به شرایط پروژه تعیین می‏شوند. در این تحلیل­ها، روند احیا و بازیابی عملکرد پس از سوانح در نظر گرفته نمی‏شود. در این مقاله، ابتدا مفهوم برگشت‌پذیری شریان­های حیاتی بعد از سوانح، ابعاد و روش­های تحلیل آن از یک‌سو و روش­های مقاوم­سازی ایستگاه‌ها و تونل­های مترو از سوی دیگر، بررسی‌ شده است. در مرحله بعد، با توجه به الگوریتم پیشنهادی برای دستیابی به مقدار کمّی برگشت­پذیری، ابتدا ایستگاه زیرزمینی 15 خرداد واقع در متروی شیراز مدل‏سازی شده و جابجایی سازه در اثر بار زلزله در 10 نقطه کنترل و برای 11 زلزله با PGA های مختلف تحلیل شده است. سپس، با توجه به مقادیر به‌دست آمده، احتمال گسسته و تجمعی شکست سازه با توجه به پارامتر جابجایی، در مقایسه با معیار آستانه خرابی، به‌دست آمده است. از روی مقادیر احتمال شکست به‌دست‌آمده و نیز با در نظر داشتن تابع احیا می­توان عملکرد سیستم را ارزیابی کرد. در نهایت، با استفاده از روابط مربوط به ارزیابی کمّی برگشت­پذیری ارائه شده، برگشت‌پذیری راهکارهای مختلف مقاوم­سازی محاسبه ‌شده است و بر اساس آن اولویت‌بندی شده‌اند. روش پیشنهادی قابلیت تعمیم به کلیه شریان­های حیاتی را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Quantification of Resiliency in Infrastructures and Its Application in the Selection of Seismic Retrofitting Strategies (Case Study: 15-Khordad Subway Station in Shiraz)

نویسندگان [English]

  • Babak Omidvar 1
  • Asieh Soltani 2
1 Associate Professor, School of Environment, College of Engineering, University of Tehran, Tehran, I. R. Iran.
2 M.Sc. of Natural Disaster Management, Faculty of Environment, University of Tehran
چکیده [English]

Resilience assessment can be assumed as an important tool for decision making for disaster managers. Considering the recovery time in the resiliency approach causes this approach to be different from other frameworks of decision-making process in the preparation phase in estimation of losses and time-dependent consequences. The recovery process after distaster occurrence may be modeled by simple recovery functions or complex organizational and social models. The obvious point in using resiliency approach is that it could give the disaster managers a recovery trend of infrastructures after disasters, with respect to important factor of time, to allocate the available resources on the basis of resiliency criterion. Currently, the selection of retrofitting strategies of infrastructures, especially subway stations, is performed by economic and technical approaches according to the state of the art standards. In these analyses, recovery trend of the performance after disasters is usually ignored. In this study, on one hand, the concept of resiliency of infrastructures after disasters, its dimensions and analysis methods are investigated, and on the other hand, some retrofitting methods are proposed for stations and subway tunnels. In the next step, considering the proposed algorithm for attaining the quantitative resiliency, first, the 15-Khordad subway station in Shiraz was modeled and displacements due to 11 earthquakes with different PGAs were analyzed in 10 control points. Then, the discrete and cumulative damage-probabilities were calculated by comparing the calculated displacements with damage-level threshold. The resiliency of the substation under different retrofitting strategies is quantified in the next stage considering calculated damage probabilities and different recovery functions. Finally, the ranking of retrofitting strategies for infrastructures was done based on the resiliency concept. The proposed method can be generalized to other infrastructures.

کلیدواژه‌ها [English]

  • Resiliency
  • Retrofitting
  • Subway station
  • Recovery functions
  • Earthquake
پاسیلو. 1389. "مطالعات مرحله 2 خط 2 قطار شهری شیراز". گزارش ایستگاه 15 خرداد، سازمان قطار شهری شیراز، شهرداری شیراز.
راستگو، م.، اظهری، س. م. و میرزایی, ن. 1389. "تحلیل خطر زمین­لرزه­ای به روش قطعی در ناحیه شیراز". چهاردهمین کنفرانس ژئوفیزیک ایران، تهران.
رجب­پور، ن.، نادرپور، ح. و فخاریان، پ. 1396. "ارزیابی تاب­آوری لرزه­ای زیرساخت‏های شهری". نشریه مصالح و سازه­های بتنی، 2(1): 77-87.
رضایی، م. ر. 1392. "ارزیابی تاب آوری اقتصادی و نهادی جوامع شهری در برابر سوانح طبیعی". مدیریت بحران، 12: 27-38.
مرکز تحقیقات راه، مسکن و شهرسازی. 1393. "آیین­نامه طراحی ساختمان‏ها در برابر زلزله (استاندارد 2800)". ویرایش 4، کمیته دائمی بازنگری آیین­نامه طراحی ساختمان‏ها در برابر زلزله.
معاونت برنامه­ریزی و نظارت راهبردی. 1392. "دستورالعمل بهسازی لرزه­های ساختمان‏های موجود". نشریه شماره 360، تجدید نظر اول، معاونت نظارت راهبردی، امور نظام فنی.
مهندسین مشاور ایمن سازان. 1387. "گزارش نهایی مکانیک خاک تونل­های خط 4 و 7 متروی تهران و تونل توحید". شرکت مترو تهران، شهرداری تهران.
وجودی, م. 1382. "بررسی تأثیر زلزله بر سازه­های زیرزمینی با نگرشی ویژه بر تونل­ها و ایستگاه­های مترو". www.vojoudi.com
Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R. and Rockström, J. 2005. “Social-ecological resilience to coastal disasters”. Sci., 309(5737): 1036-1039.
Amiri, G. G., Razeghi, H. R., Razavian Amrei, S. A., Aalaee, H. and Rasouli, S. M. 2008. “Seismic hazard assessment of Shiraz, Iran”. J. Appl. Sci., 8(1): 38-48.
Arango, I. 1970. “Design of earth retaining structures for dynamic loads”. In Proceedings of ASCE Specialty Conference on Lateral Stresses in Ground and Design of Earth Retaining Structures, Cornell University, Ithaca, NY, pp. 103-147.
ATC. 1996. “Seismic evaluation and retrofit of concrete buildings”. Vol. 1, ATC-40 Report, Applied Technology Council, Redwood City, California.
Attoh-Okine, N. O., Cooper, A. T. and Mensah, S. A. 2009. “Formulation of resilience index of urban infrastructure using belief functions”. IEEE Sys. J., 3(2): 147-153.
Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., ... and Von Winterfeldt, D. 2003. “A framework to quantitatively assess and enhance the seismic resilience of communities”. Earthq. Spectra, 19(4): 733-752.
Carlson, J. L., Haffenden, R. A., Bassett, G. W., Buehring, W. A., Collins III, M. J., Folga, S. M., ... and Whitfield, R. G. 2012. “Resilience: Theory and application”. Argonne National Laboratory, No. ANL/DIS-12-1.
Carpenter, S., Walker, B., Anderies, J. M. and Abel, N. 2001. “From metaphor to measurement: Resilience of what to what?”. Ecosys., 4(8): 765-781.
Chadha, R. K., Papadopoulos, G. A. and Karanci, A. N. 2007. “Disasters due to natural hazards”. Nat. Hazards, 40(3): 501-502.
Cimellaro, G. P., Reinhorn, A. M. and Bruneau, M. 2005. “Seismic resilience of a health care facility”. In: Proceedings of the 2005 ANCER Annual Meeting, Session III, November 10-13, Jeju, Korea.
Cimellaro, G. P., Reinhorn, A. M. and Bruneau, M. 2010. “Framework for analytical quantification of disaster resilience”. Eng. Struct., 32(11): 3639-3649.
Coghlan, A. 2004. “Recovery management in Australia: A community based approach”. In: Proceedings of the New Zealand Recovery Symposium, Napier, New Zealand, pp. 81-91.
Corigliano, M. 2007. “Seismic response of deep tunnels in near-fault conditions”. PhD Dissertation, Politecnico di Torino, Italy, 222 p.
Coulomb, C. A. 1776. “Essai sur une application des regles de maximis et minimis a quelques problèmes de statique, relatifs à l’architecture”. Memoires de Mathematique et de Physique, presentes a l’Academie Royale des Sciences par divers Savans, 7, pp. 34382, Paris, Reprinted in J. Heyman, Coulomb’s Memoir on Statics, Cambridge University Press, 1972.
Davidson, R. A. and Çagnan, Z. 2004. “Restoration modeling of lifeline systems”. Research Progress, 55.
Davis, I. 2004. “Progress in analysis of social vulnerability and capacity. Mapping vulnerability: Disasters, development and people”. Earthscan, London, pp. 128-144.
De Coulomb, C. A. 1979. “Essai sur une application de maximis et minimis à quelques problèmes de statique, relatifs à l'architecture”. Mémoires de Mathématique et de Physique présentés à l'Académie Royale des Sciences, par divers Savans, et lûs dans les Assemblées, Paris, Année 1773, 1776, pp. 343–382. P. Villaggio. An elastic theory of Coulomb friction', Arch. Ratl, Mech. Anal., 70: 135-143.
Fang, Y. S. and Chen, T. J. 1995. “Modification of Mononobe-Okabe theory”. Int. J. Rock Mech. Min. Sci. Geomech., 8(32); 406A.
FEMA. 1999. “Earthquake loss estimation methodology-HAZUS 99”. Federal Emergency Management Agency and National Institute of Buildings Sciences, Washington DC, USA.
Ghiasi, V., Omar, H., Yusoff, Z. B. Md., Huat, B. K., Muniandy, R., Ghosni, N., Nushini, A., Afshar, M. A., Ghiasi, S., Hosaini, S. G. and Ghiasi, M. 2010. “Design criteria of subway tunnels”. Austral. J. Basic Appl. Sci., 4(12): 5894-5907.
Hashash, Y. M., Hook, J. J., Schmidt, B., John, I. and Yao, C. 2001. “Seismic design and analysis of underground structures”. Tunn. Undergr. Sp. Tech., 16(4): 247-293.
Holling, C. S. 1973. “Resilience and stability of ecological systems”. Ann. Rev. Ecol. System., 4(1): 1-23.
Kijko, A. 2000. “Statistical estimation of maximum regional earthquake magnitude mmax”. In: Workshop of Seismicity Modeling in Seismic Hazard Mapping, Poljce, Slovenia, pp. 1-10.
Kouretzis, G. P., Bouckovalas, G. D. and Gantes, C. J. 2006. “3-D shell analysis of cylindrical underground structures under seismic shear (S) wave action”. Soil Dyn. Earthq. Eng., 26(10): 909-921.
Krinitzsky, E. L. 2002. “How to obtain earthquake ground motions for engineering design”. Eng. Geol., 65(1): 1-16.
Lanzano, G., Bilotta, E. and Russo, G. 2008. “Tunnels under seismic loading: A review of damage case histories and protection methods”. In: Strategies for Reduction of the Seismic Risk, Publisher StreGa, pp. 65-75.
Li, Y. and Lence, B. J. 2007. “Estimating resilience for water resources systems”. Water Resour. Res., 43(7).
Lysmer, J. and Kuhlemeyer, R. L. 1969. “Finite dynamic model for infinite media”. J. Eng. Mech. Div., 95(4): 859-878.
Manyena, S. B. 2006. “The concept of resilience revisited”. Disasters, 30(4): 434-450.
Miles, S. B. and Chang, S. E. 2006. “Modeling community recovery from earthquakes”. Earthq. Spectra, 22(2): 439-458.
Mileti, D. 1999. “Disasters by design: A reassessment of natural hazards in the United States”. Joseph Henry Press.
Mononobe, N. and Matsuo, H. 1929. “On the determination of earth pressures during earthquakes”. In: World Engineering Congress, Vol. 9, Tokyo.
Mostashari, A. 2009. “Measuring the resilience of the trans-oceanic telecommunication cable system”. IEEE Sys. J., 3(3): 295-303.
Nakamura, S., Matsumoto, T., Niwa, S., Nakamura, H. and Mori, K. 2014. “Fragility evaluation of underground structure considering multi-failure mode”. PP. 4431-4434. In: Deodatis, G., Ellingwood, B. R. and Frangopol, D. M. (Eds.), “Safety, reliability, risk and life-cycle performance of structures and infrastructures”. CRC Press.
Okabe, S. 1924. “General theory on earth pressure and seismic stability of retaining wall and dam”. J. Japan Soc. Civ. Eng., 10(6): 1277-1323.
Omer, M., Nilchiani, R., Reed, D. A., Kapur, K. C. and Christie, R. D. 2009. “Methodology for assessing the resilience of networked infrastructure”. IEEE Sys. J., 3(2): 174-180.
Pelling, M. 2003. “The vulnerability of cities: Natural disasters and social resilience”. Earthscan.
Pitilakis, K. 2011. “Systemic seismic vulnerability and risk analysis for buildings, lifeline networks and infrastructures safety gain”. CORDIS, European Commission.
Renschler, C. S., Frazier, A. E., Arendt, L. A., Cimellaro, G. P., Reinhorn, A. M. and Bruneau, M. 2010a. “A framework for defining and measuring resilience at the community scale: The PEOPLES resilience framework”. Buffalo, MCEER.
Renschler, C. S., Frazier, A. E., Arendt, L. A., Cimellaro, G. P., Reinhorn, A. M. and Bruneau, M. 2010b. “Developing the ‘PEOPLES’ resilience framework for defining and measuring disaster resilience at the community scale”. In: Proceedings of the 9th US National and 10th Canadian Conference on Earthquake Engineering, pp. 25-29.
Romero, V. S. and Caufield, R. J. 2012. “Improving the seismic resilience of lifeline tunnels”. In: NZSEE 2012 Conference.
Tavakoli, B. and Ghafory-Ashtiany, M. 1999. “Seismic hazard assessment of Iran”. Ann. Geophys., 42(6).
Thessaloniki, A. U. 2012. “Systemic seismic vulnerability and risk analysis for buildings, lifeline networks and infrastructures safety gain”. Norwegian Geotechnical Institute.
Tierney, K. and Bruneau, M. 2007. “Conceptualizing and measuring resilience: A key to disaster loss reduction”. TR News 250, May-June.
Todini, E. 2000. “Looped water distribution networks design using a resilience index based on heuristic approach”. Urban Water, 2(2): 115-122.
Towashiraporn, P. (2004). Building seismic fragilities using response surface metamodels (Doctoral dissertation, Georgia Institute of Technology).
Tsinidis, G., Heron, C., Pitilakis, K. and Madabhushi, G. 2014. “Physical modeling for the evaluation of the seismic behavior of square tunnels”. In: Seismic Evaluation and Rehabilitation of Structures, Springer, Cham., pp. 389-406.