کاربرد سیستم استنتاج تطبیقی عصبی- فازی به منظور مدلسازی شاخص ناهمواری بین‌المللی در روسازی‌های بتنی غیرمسلح درزدار

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی سیرجان

چکیده

معیارهای زیادی به‌منظور تعیین وضعیت خدمت‌دهی روسازی توسعه یافته است که یکی از مهم‌ترین این شاخص‌ها، شاخص ناهمواری بین‌المللی است. علاوه بر کاربرد شاخص ناهمواری بین‌المللی در تعیین وضعیت روسازی و سنجش نیازمندی‌های مرمت و نگهداری روسازی، در روش‌های جدید مکانیستیک– تجربی طراحی روسازی‌های صلب مانند روشMEPDG 2002 نیز پس از محاسبه تک‌تک خرابی‌ها باید با استفاده از یک مدل ریاضی، خرابی‌های مختلف روسازی به شاخص ناهمواری بین‌المللی تبدیل شوند تا بتوان مقدار ناهمواری روسازی را در سال‌های مختلف عمر بهره‌برداری پیش‌بینی نمود. بنابراین، تعیین شاخص ناهمواری بین‌المللی بر اساس خرابی‌های مشاهده شده در روسازی‌های صلب از اهمیت بسیاری برخوردار است. در این تحقیق، از روش سیستم استنتاج تطبیقی عصبی– فازی به‌منظور مدل­سازی شاخص ناهمواری بین‌المللی در روسازی‌های بتنی غیرمسلح درزدار با استفاده از داده‌های برنامه بلندمدت عملکرد روسازی استفاده شده است. متغیرهای مستقل در مدل­سازی شامل عمر روسازی برحسب سال، شاخص ناهمواری بین‌المللی اولیه برحسب متر در هر کیلومتر، درصد دال‌های با ترک‌های عرضی، درصد خردشدگی درزها، مساحت وصله‌های انعطاف‌پذیر و صلب برحسب درصد، مجموع پلکانی شدن درزها برحسب متر در هر کیلومتر، شاخص یخبندان برحسب درجه سانتی­گراد- روز، درصدی از مصالح بستر روسازی که از الک 075/0 میلی­متری عبور می­کند و متغیر وابسته به‌صورت شاخص ناهمواری بین‌المللی برحسب متر در هر کیلومتر در نظر گرفته شد. نتایج نشان می‌دهد که ضریب رگرسیون بین شاخص ناهمواری بین‌المللی اندازه‌گیری شده و پیش‌بینی شده با استفاده از رابطه NCHRP و سیستم استنتاج تطبیقی عصبی– فازی بر اساس داده‌های آزمون به ترتیب برابر با 601/0 و 758/0 است. بنابراین، می‌توان دید که استفاده از مدل توسعه داده شده بر اساس سیستم استنتاج تطبیقی عصبی– فازی امکان پیش‌بینی دقیق‌تر شاخص ناهمواری بین‌المللی در روسازی‌های بتنی غیرمسلح درزدار را نسبت به معادله ارائه شده توسط NCHRP فراهم می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Adaptive Neuro-Fuzzy Inference System for Modeling of International Roughness Index in Jointed Plane Concrete Pavements

نویسنده [English]

  • A. R. Ghanizadeh
Assistant Professor, Dept. of Civil Eng., Sirjan Univ. of Technol., I. R. Iran
چکیده [English]

Several criteria have been developed to represent the serviceability conditions of pavement, which international roughness index (IRI) is one of the most important indices. In addition to the application of IRI in case of representing serviceability conditions of the pavement and its application in prioritizing of maintenance and rehabilitation activities, in new mechanistic-empirical methods for design of rigid pavements (e.g MEPDG 2002), it is needed to convert all independent distresses to IRI by utilizing a mathematical model. Thus, determination of IRI on the basis of independent observed distresses is very important. In this research, Adaptive Nero-Fuzzy Inference System (ANFIS) is utilized for modeling of IRI of jointed plane concrete pavements (JPCP) based on long-term pavement performance (LTPP) data. Input data for ANFIS included pavement age in year, initial IRI in m/km, percentage of slabs with transverse cracking, percentage of joints with spalling, pavement surface area with flexible and rigid patching, total joint faulting in mm/km, freezing index in oC and percent subgrade material passing the 0.075-mm sieve and output was considered as IRI in m/km. Results showed that the coefficient of determination (R2) between measured and predicted values of testing set in case of NCHRP equation and ANFIS model are 0.601 and 0.758, respectively. Thus the developed model, based on ANFIS, can be used for accurate predicting of IRI in jointed plane concrete pavements in comparison with NCHRP equation.

کلیدواژه‌ها [English]

  • JPCP Pavement
  • IRI
  • Artificial Neural Network
شورایعالی فنی امور زیربنایی حمل و نقل. 1385. "دستوالعمل تحویل موقت و قطعی راه‌ها". وزارت راه و ترابری، معاونت آموزش، تحقیقات و فناوری.
Abd El-Hakim R. and El-Badawy, S. 2013. “International roughness index prediction for rigid pavements: An artificial neural network application”.  Adv. Mater. Res. 723: 854-860.
Al-omari, B. and Darter, M. I. 1992. “Relationships between IRI and PSR. University of Illinois at Urbana- Champaign”.
Al-Omari, B. and Darter, M. I. 1994. “Relationships between International Roughness Index and Present Serviceability Rating”. Transportation Research Record, 1435.
American Association of State Highway and Transportation Officials (AASHTO) .1987. “Summary results of 1987 AASHTO rideability survey”.
Cary, Jr, W. and Irick, P. 1960. “The Pavement Serviceability- Performance Concept”. Highway Research Board Bulletin, 250.
Darter, M. I. and Barenberg, E. J. 1976. “Zero-Maintenance Pavements: Results of Field Studies on the Performance Requirements and Capabilities of Conventional Pavement”. Federal Highway Administration, Report No. FHWA-RD-76-105, Washington, DC.
Federal Highway Administration. 1993. “Distress Identification Manual for Long-Term Pavement Performance Project”. SHRP-P-338, Strategic Highway Research Program, Washington, DC.
Federal Highway Administration. 1996. “Long-Term Pavement Performance Information Management System Data Users Reference Manual”. Washington, DC.
Felker, V., Najjar, Y. M. and Hossain, M. 2004. “Modeling the Roughness Progression on Kansas Portland Cement Concrete (PCC) Pavements”. Kansas Department of Transportation.
Gopalakrishnan, K. and Khaitan, S. K. 2010. “Finite element based adaptive neuro-fuzzy inference technique for parameter identification of multi-layered transportation structures”. Transport 25(1): 58-65.
Jang, J. S. R. 1993. “ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Trans. on, 23(3), 665-685.
Jang, J. S. R., Sun, C. T. and Mizutani, E. 1997. “Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence”. Prentice Hall, N. J.
Janoff, M. S. and Lanham, M. D. 1991. “Pavement Smoothness”. National Asphlt Pavement Association (NAPA).
Luo, C. 2014. “Pavement deterioration modeling and design of a composite pavement distress index for Kentucky interstate highways and parkways”. MSc. Thesis, University of Louisville,Kentucky.
Morova, N., Serin, S., Terzi, S. and Saltan, M. 2013. “Prediction of the pavement serviceability ratio of rigid highway pavements by artificial neural networks”. J. Adv. Technol. Sci., 2(1): 12-25.
National Cooperative Highway Research Program (NCHRP). 2001. “Guide for Mechanistic- Empirical Design of New and Rehabilitated Pavement Structure”. Appendix PP: Smoothness prediction for rigid pavements, Final document, National Cooperative Highway Research Program (NCHRP).
National Quality Initiative (NQI). 1996. “National Highway Users Survey”. Coopers and Lybrand, L.L.P. Opinion Research Cooperation.
Pourtahmasb, M. S., Karim, M. R. and Shamshirband, S. 2015. “Resilient modulus prediction of asphalt mixtures containing recycled concrete aggregate using an adaptive neuro-fuzzy methodology”. Constr. Buil. Mater. 82: 257-263.
Queiroz, C. A. V. and Hudson, W. R. 1984. “A stable, consistent and transferable roughness scale for worldwide standardization”. Transport. Res. Rec. 997: 46-55.
Rowshan, S. and S. Harris 1993. “Long Term Pavement Performance Information Management System”. FHWA-RD-93-094, Federal Highway Administration, Washington, DC.
Sayers, M. W. and Gillespie, T. D. 1986. “The International road roughness experiments: A basis for establishing a standard scale for road roughness measurements”. Transport. Res. Rec. 1084: 76-85.
Sayers, M. W., Gillespie, T. D. and Paterson, W. D. O. 1986a. “Guidelines for Conducting and Calibrating Road Roughness Measurements”. Technical Paper 46, The World Bank, Washington, DC.
Sayers, M. W., Gillespie, T. D. and Queiroz, C. A. V. 1986b. “The International Road Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements”. Technical Paper 45, The World Bank, Washington, DC.
Shafabakhsh, G. and Tanakizadeh, A. 2015. “Investigation of loading features effects on resilient modulus of asphalt mixtures using adaptive neuro-fuzzy inference system”. Constr. Buil. Mater. 76: 256-263.
Shekharan, A. R. 2000. “Pavement Performance Prediction by Artificial Neural Network”. Proc. 2nd International Workshop, Computational Intelligence Applications in Pavement and Geomechanical Systems, A. A. Balkema.
Smith, K., Smith, K. D., Evans, L. D., Hoerner, T. E. and Darter, M. I. 1997. “Smoothness Specifications for Pavements”. Final Report NCHRP 1-31.
Strategic Highway Research Program. 1992. “SHRP Database Structure Reference Manual”. Washington, DC.
Tabatabaei, S. A., Khaledi, S. and Jahantabi, A. 2013. “Modeling the Deduct value of the pavement condition of asphalt pavement by adaptive neuro fuzzy inference system”. Int. J. Pavement Res. Technol. 6(1): 59-65.
Teomete, E., Bayrak, M. B. and Agarwal, M. 2004. “Use of Artificial Neural Networks for Predicting Rigid Pavement Roughness”. Transportation Scholars Conference, Iowa State University, Ames, Iowa, USA.
Terzi, S. 2013. “Modeling for pavement roughness using the ANFIS approach”. Adv. Eng. Software 57: 59-64.
Tigdemir, M., Karasahin, M. and Sen, Z. 2002. “Investigation of fatigue behaviour of asphalt concrete pavements with fuzzy-logic approach”. Int. J. Fatigue, 24(8): 903-910.
Yang, Y. and Zhang, Q. 1997. “Analysis for the Results of Point Load Testing with Artificial Neural Network”. Proc. Int. Conf. Comp. Methods and Adv. in Geomech., A. A. Balkema, Rotterdam.
Yu, H. T., Darter, M. I., Smith, K. D., Jiang, J. and Khazanovich, L. 1998.  “Performance of Concrete Pavements”. Volume III, Improving Concrete Pavement Performance, Report No. FHWA-RD-95-111, Federal Highway Administration, Washington, DC.