بررسی رفتار شیارشدگی قیر های اصلاح شده با نانو کامپوزیت های SBS/MgO

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 گروه مهندسی عمران، واحد نوشهر، دانشگاه آزاد اسلامی، نوشهر، ایران

10.22075/jtie.2020.20806.1465

چکیده

شیار شدگی یکی از مهم‌ترین خرابی‌های روسازی‌های انعطاف‌پذیر می‌باشد که به‌طور چشمگیری از مشخصات قیر تأثیر می‌پذیرد. برای جلوگیری از این خرابی لازم است از قیر با مشخصات عملکردی مناسبی در ساخت مخلوط‌های آسفالتی استفاده گردد. تحقیقات بسیاری نشان داده است که قیرهای پلیمری مزیت‌های فروانی داشته ولی به دلیل سازگاری پایین بین قیر و پلیمر در پایداری ذخیره‌سازی مشکل داشته است و در حین ذخیره‌سازی تشکیل دو فاز قیر و پلیمر را می‌دهد که باعث کاهش مشخصات عملکردی مخلوط‌های آسفالتی مانند مقاومت شیارشدگی می‌شود. بدین جهت از قیرهای پلیمری اصلاح‌شده با نانو کامپوزیت‌ها استفاده‌شده است تا با افزودن نانو اکسید منیزیم به قیر پلیمری سازگاری بین پلیمر و قیر و مشخصات عملکردی قیر بهبود پیدا کند و احتمال رخ دادن خرابی‌هایی مانند شیارشدگی کاهش یابد. تحقیق حاضر برای ارزیابی اثر نانو ذرات اکسید منیزیم بر روی عملکرد شیارشدگی قیرهای پلیمری انجام‌شده است. در این تحقیق قیر خالص 70/60 با پلیمر SBS و نانو ذرات اکسید منیزیم در 5 میزان مختلف اصلاح گردید. آزمایشات ویسکوزیته چرخشی و بازگشت خزشی در چند سطح تنش (MSCR) برای ارزیابی اثر نانو ذرات بر قیر پلیمری بکار برده شده است. نتایج تحقیق نشان می‌دهد که نانو ذرات اکسید منیزیم ویسکوزیته قیرهای پلیمری را افزایش داده است. با افزودن 2/1 درصد نانو ذرات اکسید منیزیم به قیر پلیمری پارامتر Jnr حدود 23/40 کاهش و درصد بازگشت حدود 5/57 درصد افزایش داشته است. این نتایج نشان می‌دهد که نانو ذرات اکسید منیزیم تأثیر قابل‌توجهی بر بهبود عملکرد دمای بالای قیرهای پلیمری اصلاح‌شده با نانو ذرات دارد و مقاومت در برابر شیارشدگی را افزایش می‌دهد. به‌طورکلی قیرهای اصلاح‌شده با کامپوزیت‌های ‌-SBS/MgO پتانسیل مطلوبی برای بهبود عملکرد قیر داشته و قابلیت کاربرد در مناطق گرم را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the rutting behavior of modified bitumen with SBS / MgO nanocomposite

نویسندگان [English]

  • Gholamali Shafabakhsh 1
  • Mohammadreza Aliakbari Bidokhti 2
  • Hassan Divandari 3
1 Faculty of Civil Engineering, Semnan University, Semnan, Islamic Republic of Iran
2 Faculty of Civil Engineering, Semnan University, Semnan, Islamic Republic of Iran
3 Department of Civil Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran
چکیده [English]

Rutting is one of the most important failures of flexible pavements, which is dramatically affected by bitumen characteristics. To prevent this failure, it is necessary to use bitumen with good performance characteristics in the construction of asphalt mixtures. Numerous studies have shown that polymer modified bitumen has many advantages. The storage stability of polymer modified bitumen is difficult because the compatibility between bitumen and polymer is low. During storage, it forms two phases of bitumen and polymer, which reduces the performance characteristics of asphalt mixtures such as rutting resistance. For this reason, polymer bitumen modified with nanocomposites have been used. By adding magnesium nano oxide to the polymer bitumen, the compatibility between the polymer and the bitumen and the performance characteristics of the bitumen will be improved, and the possibility of damage such as rutting will be reduced. The present study was conducted to evaluate the effect of magnesium oxide nanoparticles on the rutting performance of polymer bitumen. In this study, pure bitumen 60/70 was modified with SBS polymer and magnesium oxide nanoparticles in 5 different levels. Rotational viscosity and multiple stress creep recovery test (MSCR) have been used to evaluate the effect of nanoparticles on polymer modified bitumen. Research shows that magnesium oxide nanoparticles increase the viscosity of polymer modified bitumen and improve the Jnr and the percentage recovery of bitumen. These results show that magnesium oxide nanoparticles have a significant effect on improving the high temperature performance of nano modified polymer bitumen and increase the rutting resistance. In general, bitumen modified with SBS/MgO nanocomposites have a good potential for improving bitumen performance and can be used in warm areas.

کلیدواژه‌ها [English]

  • Polymer
  • Magnesium oxide nanoparticles
  • Rutting
  • viscosity
زیاری، ح.، دیواندری، ح. و شالچی طوسی، ح. 1396. "ارائه مدل تعیین چسبندگی و زاویه اصطکاک داخلی آسفالت با استفاده از پارامترهای آزمایش مارشال". مهندسی زیرساخت­های حمل و نقل, 3(3): 37-54.
شاه ابراهیمی، ا. و  فخری، م. 1398. "بررسی اثر ترکیب پلیمرها بر حساسیت رطوبتی و شیارشدگی مخلوط­های آسفالتی داغ". مهندسی زیرساخت­های حمل و نقل، 5(2): 17-34.
Alves Gama, D., Rosa Júnior, J. M., Alves de Melo, T. J. and Rodrigues Guedes, J. K. 2016. “Rheological studies of asphalt modified with elastomeric polymer”. Constr. Build. Mater., 106: 290-295. https://doi.org/10.1016/j.conbuildmat.2015.12.142
Ameli, A., Babagoli, R., Khabooshani, M., AliAsgari, R. and Jalali, F. 2020. “Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite”. Constr. Build. Mater., 239: 117700. https://doi.org/10.1016/j.conbuildmat.2019.117700
Amini, B., Rajabbolookat, M. J., Abdi, A. and Salehfard, R. 2017. “Investigating the influence of using nano-composites on storage stability of modified bitumen and moisture damage of HMA”. Petrol. Sci. Technol., 35(8): 800-805. https://doi.org/10.1080/10916466.2017.1292292
Arabani, M., Tahami, S. A. and Hamedi, G. H. 2018. “Performance evaluation of dry process crumb rubber-modified asphalt mixtures with nanomaterial”. Road Mater. Pavement Design, 19(5): 1241-1258. https://doi.org/10.1080/14680629.2017.1302356
Azarhoosh, A. and Koohmishi, M. 2020. “Investigation of the rutting potential of asphalt binder and mixture modified by styrene-ethylene/propylene-styrene nanocomposite”. Constr Build. Mater., 255: 119363. https://doi.org/10.1016/j.conbuildmat.2020.119363
Bala, N., Kamaruddin, I., Napiah, M. and Danlami, N. 2017. “Rheological and rutting evaluation of composite nanosilica/polyethylene modified bitumen”. IOP Conference Series: Mater. Sci. Eng., 201(1): 012012. https://doi.org/10.1088/1757-899X/201/1/012012
Bala, N., Napiah, M. and Kamaruddin, I. 2018. “Effect of nanosilica particles on polypropylene polymer modified asphalt mixture performance”. Case Stud. Constr. Mater., 8: 447-454. https://doi.org/10.1016/j.cscm.2018.03.011
Baldi-sevilla, A., Montero, M. L., Aguiar, J. P. and Loría, L. G. 2016. “Influence of nanosilica and diatomite on the physicochemical and mechanical properties of binder at unaged and oxidized conditions”. Constr. Build. Mater., 127: 176-182. https://doi.org/10.1016/j.conbuildmat.2016.09.140
Cuciniello, G., Leandri, P., Filippi, S., Lo Presti, D., Polacco, G., Losa, M. and Airey, G. 2019. “Microstructure and rheological response of laboratory-aged SBS-modified bitumens”. Road Mater. Pavement Design. https://doi.org/10.1080/14680629.2019.1621771
Farias, L. G. A. T., Leitinho, J. L., Amoni, B. de C., Bastos, J. B. S., Soares, J. B., Soares, S. de A. and de Sant’Ana, H. B. 2016. “Effects of nanoclay and nanocomposites on bitumen rheological properties”. Constr. Build. Mater., 125: 873-883. https://doi.org/10.1016/j.conbuildmat.2016.08.127
Hamedi, G. H. and Ranjbar Pirbasti, Z. 2020. “The effects of UHMWPE/nanoclay on rheological properties of modified asphalt binder”. Petrol. Sci. Technol. 38(4): 309-315. https://doi.org/10.1080/10916466. 2019.1703740
Huang, W. and Tang, N. 2015. “Characterizing SBS modified asphalt with sulfur using multiple stress creep recovery test”. Constr. Build. Mater., 93: 514-521. https://doi.org/http://dx.doi.org/10.1016/j.conbuild mat.2015.06.041
Jiao, Y., Zhang, Y., Fu, L., Guo, M. and Zhang, L. 2019. “Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures”. Road Mater. Pavement Design, 20: S196-S216. https://doi.org/10.1080/14680629.2019.1590223
Li, R., Xiao, F., Amirkhanian, S., You, Z. and Huang, J. 2017. “Developments of nano materials and technologies on asphalt materials- A review”. Constr. Build. Mater., 143: 633-648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
Mahali, I. and Sahoo, U. C. 2019. “Rheological characterization of nanocomposite modified asphalt binder”. Int. J. Pavement Res. Technol., 12(6): 589-594. https://doi.org/10.1007/s42947-019-0070-8
Martínez-Anzures, J. D., Zapién-Castillo, S., Salazar-Cruz, B. A., Rivera-Armenta, J. L., Antonio-Cruz, R. del C., Hernández-Zamora, G. and Méndez-Hernández, M. L. 2019. “Preparation and properties of modified asphalt using branch SBS/nanoclay nanocomposite as a modifier”. Road Mater. Pavement Design, 20(6): 1275-1290. https://doi.org/10.1080/14680629.2018.1441062
Mousavinezhad, S. H., Shafabakhsh, G. and Jafari Ani, O. 2019. “Nano-clay and styrene-butadiene-styrene modified bitumen for improvement of rutting performance in asphalt mixtures containing steel slag aggregates”. Constr. Build. Mater., 226: 793-801. https://doi.org/10.1016/j.conbuildmat.2019.07.252
Ouf, M. E., Abu El-Maaty Behiry, A. E. and Shahrah, S. 2019. “Using of nano materials and additives to enhance the hot mix asphalt”. Int. J. Sci. Eng. Res., 10(4): 861-871.
Shafabakhsh, G., Aliakbari Bidokhti, M. and Divandari, H. 2020. “Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature”. Road Mater. Pavement Design. https://doi.org/10.1080/14680629.2020.1772351
Shafabakhsh, G., Sadeghnejad, M. and Chelovian, A. 2015. “Experimental study on creep behavior of stone mastic asphalt by using of nano Al2O3”. Int. J. Sci. Eng. Res., 6(10): 903-911.
Singh, D., Sawant, D. and Xiao, F. 2017. “High and intermediate temperature performance evaluation of crumb rubber modified binders with RAP”. Transport. Geotech., 10: 13-21. https://doi.org/10.1016 /j.trgeo.2016.10.003
Taher, B. M., Mohamed, R. K. and Mahrez, A. 2011. “A review on fatigue and rutting performance of asphalt mixes”. Sci. Res. Essays, 6(4): 670-682.
Wen, G., Zhang, Y. Y., Zhang, Y. Y., Sun, K. and Fan, Y. 2002. “Rheological characterization of storage-stable SBS-modified asphalts”. Polym. Test., 21(3): 295-302.
Xu, Q., Chen, H. and Prozzi, J. A. 2010. “Performance of fiber reinforced asphalt concrete under environmental temperature and water effects”. Constr. Build. Mater., 24(10): 2003-2010. https://doi.org/10.1016/j.conbuildmat.2010.03.012
Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., Shi, X. and Goh, S. W. 2013. “Rheological properties and chemical bonding of asphalt modified with nanosilica”. Mater. Civ. Eng., 25(11): 1619-1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
Ye, F., Yin, W., Lu, H. and Dong, Y. 2020. “Property improvement of nano-montmorillonite/SBS modified asphalt binder by naphthenic oil”. Constr. Build. Mater., 243. https://doi.org/10.1016/j.conbuildmat. 2020.118200
Zhang, H., Chen, Z., Xu, G. and Shi, C. 2018. “Evaluation of aging behaviors of asphalt binders through different rheological indices”. Fuel, 221: 78-88. https://doi.org/10.1016/j.fuel.2018.02.087
Zhang, J., Li, H., Liu, P., Liang, M., Jiang, H., Yao, Z. and Airey, G. 2020. “Experimental exploration of influence of recycled polymer components on rutting resistance and fatigue behavior of asphalt mixtures”. J. Mater. Civ. Eng., 32(6). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003140
Zhu, J., Birgisson, B. and Kringos, N. 2014. “Polymer modification of bitumen: Advances and challenges”. Eur. Polym. J. 54(1): 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.
Zhou, X., Zhang, G., Liu, R. and Zheng, L. 2014. “Molecular simulations of anti-aging mechanisms on nano-LDHs modified asphalt”. Key Eng. Mater., 599: 198-202. https://doi.org/10.4028/www.scientific.net/ KEM.599.198
Yin, W., Ye, F. and Lu, H. 2017. “Establishment and experimental verification of stability evaluation model for SBS modified asphalt: Based on quantitative analysis of microstructure”. Constr. Build. Mater., 131: 291-302. https://doi: 10.1016/j.conbuildmat.2016.11.041