مقایسه نتایج آزمایش‌های DSR و MSCR بر پایه عملکرد شیارشدگی چسباننده‌های قیری اصلاح‌شده با سیلیس مزو‌متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری راه و ترابری، دانشکده مهندسی عمران، دانشگاه سمنان

2 غلامعلی شفابخش*، استاد، گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه سمنان

3 استادیار، گروه نانوفناوری، دانشکده علوم و فناوری‌های نوین، دانشگاه سمنان

چکیده

در این تحقیق، به منظور مقایسه نتایج آزمایش­های رئومتر برش دینامیک (DSR) و خزش و بازگشت در چند سطح تنش  (MSCR) در ارتباط با عملکرد شیارشدگی چسباننده‏های قیری اصلاح­شده با سیلیس مزومتخلخل، ابتدا مقادیر 2، 4، 6 و 8 درصد وزنی از این افزودنی به یک قیر خالص افزوده گردید و پس از 20 دقیقه لرزش و 30 دقیقه اختلاط در دستگاه همزن با دور زیاد، اقدام به تولید چهار چسباننده قیری متفاوت شد. سپس، نمونه­های به‏دست آمده و قیر خالص با استفاده از آزمایش لعاب نازک چرخان پیر شدند. بعد از آن، روی نمونه­های حاصل از پسماند آزمایش لعاب نازک چرخان، آزمایش­های رئومتر برش دینامیک و خزش و بازگشت در چند سطح  تنش انجام شد. مقایسه خروجی آزمایش­ها حاکی از همسویی نتایج بود، به­طوری که روند تغییرات پارامتر بازگشت الاستیک (R) در آزمایش MSCR و پارامتر شیارشدگی (G*/Sinδ) در آزمایش DSR یکسان و در جهت عکس روند تغییرات پارامتر نرمی خزشی بازگشت­ناپذیر (Jnr) بود. در هر دو آزمایش، حداکثر مقادیر پارامترهای شیارشدگی و بازگشت الاستیک و حداقل مقدار پارامتر نرمی خزشی بازگشت­ناپذیر و به عبارت دیگر بهترین عملکرد شیارشدگی در چسباننده قیری اصلاح شده با 4% وزنی از سیلیس مزومتخلخل روی داد. به­علاوه، در هر دو آزمایش DSR و MSCR، افزایش سطح دما موجب کاهش پتانسیل مقاومت در برابر شیارشدگی و تمایل به بروز رفتار ویسکوزتر و مشابه با سیالات نیوتنی در چسباننده‏های قیری شد. وجه تمایز نتایج دو آزمایش در این بود که در آزمایش MSCR، بیشترین مقاومت در برابر افزایش سطح تنش به چسباننده حاوی 6% سیلیس مزومتخلخل LUS-1 اختصاص یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the Results of DSR and MSCR Tests, Based on Rutting Performance of Asphalt Binders Modified with Mesoporous Silica

نویسندگان [English]

  • Reza Fallah 1
  • Gholam Ali Shafabakhsh 2
  • Zohreh Bahrami 3
1 PhD Candidate, Department of Road and Transportation, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran.
2 Professor, Department of Road and Transportation, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran.
3 Assistant Professor, Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, I. R. Iran.
چکیده [English]

In this study, for comparison of the results of dynamic shear rheometer (DSR) and multiple stress creep and recovery (MSCR) tests, based on rutting performance of asphalt binders modified with mesoporous silica, four different asphalt binders were produced using a mixture of 2%, 4%, 6% and 8% (w/w) of this additive and neat bitumen. After a 20-minute vibration, the produced mixtures were mechanically mixed for 30 minutes, in a high-shear homogenizer mixer. Then, the modified binders and neat bitumen were subjected to DSR and MSCR tests, after the aging process in RTFO test. The comparison between outputs indicated that the results of DSR and MSCR tests have been consistent, as the variation trends of R and G*⁄sin δ have been the same at different temperature levels. On the other hand, the variation trend of Jnr has been the opposite, and in both tests, maximum value of R and G*⁄sin δ and minimum value of Jnr have occurred in the 4% bitumen modifier. This suggests that the greatest potential resistance to rutting has been observed in the binder containing 4% (w/w) mesoporous silica. Furthermore, at both DSR and MSCR tests, asphalt binders at high temperatures revealed a more viscous behavior like Newtonian fluids. The difference between the results of the two experiments was that in the MSCR test, the highest resistance to increasing the stress level was assigned to the binder containing 6% mesoporous silica.

کلیدواژه‌ها [English]

  • Asphalt binder
  • Dynamic shear rheometer
  • Multiple stress creep and recovery
  • Mesoporous silica
  • Rutting performance
AASHTO M 332. 2019. Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. AASHTO specifications and test methods. https://store.transportation.org/item/publicationdetail/4231

Arshad, A. K., Samsudin, M. S., Masri, K. A., Karim, M. R. and Abdul Halim, A. G. 2017. Multiple stress creep and recovery of nanosilica modified asphalt binder. MATEC Web of Conferences, 103: 09005. doi: 10.1051/matecconf/201710309005    

Ashish, P. K. and Singh, D. 2019. Effect of carbon nano tube on performance of asphalt binder under creep-recovery and sustained loading conditions. Constr. Build. Mater., 215: 523-543. doi: 10.1016/j.conbuildmat.2019.04.199

ASTM D2872. 2019. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM International, West Conshohocken, PA.  doi: 10.1520/D2872-19

ASTM D7175. 2015. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. ASTM International, West Conshohocken, PA.  doi: 10.1520/D7175-15

Babagoli, R., Vamegh, M. and Mirzababaei, P. 2018. Laboratory evaluation of the effect of SBS and Lucobite on performance properties of bitumen. Petrol. Sci. Technol., 37(3): 255-260. doi: 10.1080/10916466.2018.1539748

Bahrami, Z., Badiei, A., Atyabi, F., Darabi, H. R. and Mehravi, B. 2015. Piperazine and its carboxylic acid derivatives-functionalized mesoporous silica as nanocarriers for gemcitabine: Adsorption and release study. Mater. Sci. Eng.: C, 49: 66-74. doi: 10.1016/j.msec.2014.12.069

Beck, J. S., Chu, C. T., Johnson, I. D., Kresge, C. T., Leonowicz, M. E., Roth, W. J. and Vartuli, J. C. 1992. Synthesis of mesoporous crystalline material. Google patents. 
Bonneviot, L., Morin, M. and Badiei, A. 2003. Mesostructured metal or non-metal oxides and method for making same. US 0133868, US patent.
Cai, L., Shi, X. and Xue, J. 2018. Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS. Constr. Build. Mater., 172: 204-211. doi: 10.1016/j.conbuildmat.2018.03.187
Crucho, J. M. L., das Neves, J. M. C., Capitão, S. D. and de Picado-Santos, L. G. 2018. Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay. Constr. Build. Mater., 181: 309-318. doi: 10.1016/j.conbuildmat.2018.06.052 
D’Angelo, J. 2009. The relationship of the MSCR test to rutting. Road Mater. Pavement Design, 10: 61-80. doi: 10.1080/14680629.2009.9690236
Dong, Z., Zhou, T., Luan, H., Williams, R. C., Wang, P. and Leng, Z. 2019. Composite modification mechanism of blended bio-asphalt combining styrene butadiene-styrene with crumb rubber: a sustainable and environmental friendly solution for wastes. J. Clean. Prod., 214: 593-605. doi: 10.1016/j.jclepro.2019.01.004
Filho, P. G. T. M., Rodrigues dos Santos, A. T., Lucena, L. C. de F. L. and de Sousa Neto, V. F. 2019. Rheological evaluation of asphalt binder 50/70 incorporated with titanium dioxide nanoparticles. J. Mater. Civ. Eng., 31(10): 04019235. doi: 10.1061/(ASCE)MT.1943-5533.0002885 
Ghanoon, S. A. and Tanzadeh, J. 2019. Laboratory evaluation of nano-silica modification on rutting resistance of asphalt binder. Constr. Build. Mater., 223: 1074-1082. doi: 10.1016/j.conbuildmat.2019.07.295
Leiva-Villacorta, F. and Vargas-Nordcbeck, A. 2017. Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Mater. Pavement Design, 20(2): 414-425. doi: 10.1080/14680629.2017.1385510
Lin, P., Yan, C., Huang, W., Li, Y., Zhou, L., Tang, N., Xiao, F., Zhang, Y. and Quan, L. 2019. Rheological, chemical and aging characteristics of high content polymer modified asphalt. Constr. Build. Mater., 207: 619-629.  doi: 10.1016/j.conbuildmat.2019.02.086
Mansourian, A., Rezazad Gohari, A. and Karimian Khosrowshahi, F. 2019. Performance evaluation of asphalt binder modified with EVA/ HDPE/nanoclay based on linear and non-linear viscoelastic behaviors. Constr. Build. Mater., 208: 554-563. doi: 10.1016/j.conbuildmat.2019.03.065
Moeini, A., Badiei, A. and Rashidi, A. M. 2019. Effect of nanosilica morphology on modification of asphalt binder. Road Mater. Pavement Design, 21(8): 2230-2246.  doi: 10.1080/14680629.2019.1602072
Moghadasnejad, F, Nazari, H, Naderi, K., Karimiyan Khosroshahi, F. and Hatefi Oskuei, M. 2016. Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range. Petrol. Sci. Technol., 35(7): 641-646. doi: 10.1080/10916466.2016.1276589
Moreno-Navarro, F., Tauste, R., Sol-Sánchez, M. and Rubio-Gámez, M. C. 2019. New approach for characterising the performance of asphalt binders through the multiple stress creep and recovery test. Road Mater. Pavement Design,   doi: 10.1080/14680629.2019.1595094
Rezaei, S., Khordehbinan, M. V., Fakhrefatemi, S. M. R., Ghanbari, S. and Ghanbari, M. 2017. “The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt”. Petrol. Sci. Technol., 35(6): 553-560. doi: 10.1080/10916466.2016.1270301
Sadeghnejad, M. and Shafabakhsh, Gh. 2017. Use of nano SiO2 and nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures”. Constr. Build. Mater., 157: 965-974. doi: 10.1016/j.conbuildmat.2017.09.163
Saltan, M., Terzi, S. and Karahancer, S. 2017. Examination of hot mix asphalt and binder performance modified with nano silica. Constr. Build. Mater., 156: 976-984. doi: 10.1016/j.conbuildmat.2017.09.069
Saltan, M., Terzi, S. and Karahancer, S. 2018. Performance analysis of nano modified bitumen and hot mix asphalt. Constr. Build. Mater., 173: 228-237.  doi: 10.1016/j.conbuildmat.2018.04.014
Shafabakhsh, Gh., Motamedi, M., Firouznia, M. and Isazadeh, M. 2019. Experimental investigation of the effect of asphalt binder modified with nanosilica on the rutting, fatigue and performance grade. Petrol. Sci. Technol., 37: 1495-1500. doi: 10.1080/10916466.2018.1476534
Taherkhani, H. and Afroozi, S. 2016. The properties of nanosilica-modified asphalt cement. Petrol. Sci. Technol., 34(15): 1381-1386. doi: 10.1080/10916466.2016.1205604
Tang, J., Zhu, C., Zhang, H., Xu, G., Xiao, F. and Amirkhanian, S. 2019. Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt.  Constr. Build. Mater., 194: 238-246.  doi: 10.1016/j.conbuildmat.2018.11.028
Wang, C. and Wang, Y. 2019. Physico-chemo-rheological characterization of neat and polymer-modified asphalt binders. Constr. Build. Mater., 199: 471-482. doi: 10.1016/j.conbuildmat.2018.12.064
Wanyika, H. 2013. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J. Nanopart. Res., 15(8): 1-9. https://link.springer.com/article/10.1007/s11051-013-1831-y
Yang, Q., Liu, Q., Zhong, J., Hong, B., Wang, D. and Oeser, M. 2019. Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Constr. Build. Mater., 201: 580-589. doi: 10.1016/j.conbuildmat.2018.12.173
Zhang, L., Xing, C., Gao, F., Li, T. and Tan, Y. 2016. Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt, Constr. Build. Mater.127: 466-474. doi: 10.1016/j.conbuildmat.2016.10.010 
Zhou, Z., Gu, X., Dong, Q., Ni, F. Jiang, Y. 2019. Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator. Constr. Build. Mater. 203: 294-303. doi: 10.1016/j.conbuildmat.2019.01.119