بررسی خواص مدول الاستیسیته و جذب صوت آسفالت نیمه‌گرم حاوی فیلرهای رسانای حرارت- الکتریسیته با استفاده از امواج اُلتراسونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری راه و ترابری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

2 استادیار، مرکز تحقیقات راه، مسکن و شهرسازی، وزارت راه و شهرسازی، تهران

3 مهندس عمران، آزمایشگاه فنی و مکانیک خاک، وزارت راه و شهرسازی، تهران

چکیده

امروزه، در تحقیقات محققان، استفاده از مواد دورریختنی و با قابلیت انتقال حرارت در آسفالت‏های مختلف، به­خصوص آسفالت نیمه‏گرم (به سبب فواید محیط­زیستی)، مد نظر قرار گرفته است. مدول الاستیسیته در تشخیص کارایی آسفالت بسیار مهم است که با روش‏های مختلف به‏دست می­آید. در این مقاله، استفاده از روش اُلتراسونیک جهت به‏دست آوردن مدول طولی و پیش‏بینی روند مدول الاستیسیته نمونه‏های آسفالتی نیمه‏گرم حاوی فیلرهای هادی گرما- الکتریسیته درنظر گرفته شده است. همچنین، به بررسی جذب صوت این نوع آسفالت‏ها با استفاده از امواج التراسونیک پرداخته شده است. در این تحقیق، نمونه‏های آسفالتی حاوی فیلرهای سرباره روی، سرباره آهن، لجن کانورتور، سرباره مس و فیلر کاهنده مقاومت الکتریکی زمین، هر کدام با 35%، 70% و 100% جایگزین وزنی فیلر آهکی (عادی) در آسفالت می‏باشند. از طریق آزمایش خمش سه­نقطه­ای (SCB)، میزان مدول الاستیسیته به‏دست آمد و سپس روی نمونه‏های مارشال با استفاده از روش زیرآبی و با استفاده از امواج التراسونیک، مقدار مدول طولی و همچنین میزان جذب صوت نمونه‏ها ارزیابی شد. نتایج، نشان­دهنده این واقعیت است که به طور میانگین، مخلوط­های حاوی BOF، سرباره آهن، GIM و سرباره مس، به ترتیب به میزان 7، 4، 20 و 6 درصد نسبت به نمونه شاهد، امپدانس بیشتری دارند. همچنین، مدول طولی به­دست آمده با روش امواج التراسونیک برای نمونه‏ها همان روند مدول الاستیسیته با روش خمش سه‏نقطه‏ای را داراست. همچنین، نتایج نشان داد که از نظر آماری اگرچه نوع فیلر بر عملکرد مدول طولی مؤثر می‏باشد ولی درصد فیلر هادی گرما (جانشین فیلر آهکی) بر عملکرد آسفالت مؤثر نیست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of elasticity modulus properties and sound absorption of warm mix asphalt containing conductive fillers using ultrasonic waves

نویسندگان [English]

  • Sajad Javadi 1
  • Saeed Ahmadi 2
  • Reza Esmaili 3
1 Civil engineering Department, K. N. Toosi, University, Tehran, Iran
2 مرکز تحقیقات راه، مسکن و شهرسازی
3 آزمایشگاه فنی و مکانیک خاک وزارت راه و شهرسازی
چکیده [English]

Today, in the research of researchers, the use of waste materials with heat transfer capability in various asphalts, especially warm mix asphalt (due to environmental benefits) has been considered. Obtaining the modulus of elasticity is very important in determining the efficiency of asphalt, which can be achieved by various methods. Also, the sound absorption of this type of asphalt has been studied using ultrasonic waves. In this study, asphalt samples containing fillers of zinc slag, iron slag, converter sludge, copper slag and earth filler reducing electrical resistance each with 35%, 70% and 100% weight replacement of lime filler (normal) in asphalt. Through SCB three-point bending test, the amount of modulus of elasticity was obtained and then on Marshall samples using underwater method and using ultrasonic waves, the amount of longitudinal modulus and the amount of sound absorption of the samples were investigated. The results show the fact that on average, in the mixtures containing BOF, steel slag, GIM and copper slag, it can be said that mixtures containing BOF by 7% and mixtures containing steel slag, GIM and copper slag by 4, respectively. , 20 and 6% have more impedance than the control sample (WMA). Furthermore, the results showed that the longitudinal modulus obtained by ultrasonic wave method for the samples has the same trend of modulus of elasticity by three-point bending method. The results also showed that statistically, although the type of filler is effective on the performance of the longitudinal modulus, but the percentage of conductive filler (replacement of lime filler) is not effective on the performance of asphalt.

کلیدواژه‌ها [English]

  • Modulus of elasticity
  • warm mix asphalt
  • Conductive fillers
  • Ultrasonic waves
  • Sound absorption
Abdallah, I., Nazarian, S., Melchor-Lucero, O., & Ferregut, C. 1999, October. "Validation of Remaining Life Models Using Texas Mobile Load Simulato"r. In 1999 First Accelerated Pavement Testing Conference.‏
Abdelfattah, H. F., Al-Shamsi, K., & Al-Jabri, K. 2018. "Evaluation of rutting potential for asphalt concrete mixes containing copper slag". International Journal of Pavement Engineering, 19(7), 630-640.‏
Aktaş, B. and Aslan, S. 2016. “Laboratory evaluation on waste slag produced zinc industry as mineral filler in stone mastic asphalt”. 6th Eurasphalt & Eurobitume Congress, 1-3 June, Prague, Czech Republic. dx.doi.org/10.14311/EE.2016.383.
Alber, S., Ressel, W., Liu, P., Wang, D. and Oeser, M. 2018. “Influence of soiling phenomena on air-void microstructure and acoustic performance of porous asphalt pavement”. Constr. Build. Mater., 158: 938-948.‏
Arabani, M., Kheiry, P. T. and Ferdosi, B. 2009. “Laboratory evaluation of the effect of HMA Mixt parameters on ultrasonic pulse wave velocities”. Road Mater. Pavement Design, 10(1): 223-232.‏
Behnood, A., Gharehveran, M. M., Asl, F. G. and Ameri, M. 2015. “Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash”. Constr. Build. Mater., 96: 172-180.‏
Biligiri, K. P. and Kaloush, K. E. 2009. “Prediction of pavement materials' impedance using ultrasonic pulse velocity”. Road Mater. Pavement Design, 10(4): 767-787.
Biligiri, K. P., & Way, G. B. 2014. "Predicted E* dynamic moduli of the Arizona mixes using asphalt binders placed over a 25-year period". Construction and Building Materials, 54, 520-532.‏
Cheng, J. W., Yang, S. K., Lee, P. H. and Huang, C. J. 2012. “Attenuation of guided wave propagation by the insulation pipe”. In: Petrochemicals, BoD–Books on Demand.
Cruz, R. A., Correa, C. R. and Díaz-Ramírez, G. A. 2019. “Acoustic properties of concrete modified with an asphalt/styrene butadiene emulsion”. J. Phys.: Conference Series, 1247(1): 012036, IOP Publishing.‏
De Nicola, F., Claudia, L., MariaVittoria, P., Giulia, M., & Anna, A. 2011. "Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment". Atmospheric Environment, 45(7), 1428-1433.‏
Du Tertre, A., Serhan Kırlangıç, A., Cascante, G. and Tighe, S. L. 2022. “A non-destructive approach for the predictive master curve of ASPHALT pavements using ultrasonic and deflection methods”. Int. J. Pavement Eng., 23(5): 1540-1551.‏
Fakhri, M. and Ahmadi, A. 2017. “Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation”. Constr. Build. Mater., 147: 630-638.
Fakhri, M., Bahmai, B. B., Javadi, S., & Sharafi, M. 2020. "An evaluation of the mechanical and self-healing properties of warm mix asphalt containing scrap metal additives". Journal of Cleaner Production, 253, 119963.‏
Fakhri, M., Javadi, S., Sassani, A. and Torabi-Dizaji, M. 2022. “Zinc slag as a partial or total replacement for mineral filler in warm mix asphalt and its effects on self-healing capacity and performance characteristics”. Mater., 15(3): 736.‏
Hou, S., Deng, Y., Jin, R., Shi, X. and Luo, X. 2022. “Relationships between physical, mechanical and acoustic properties of asphalt mixtures using ultrasonic testing”. Build., 12(3): 306.‏
Houel, A. and Arnaud, L. 2009. “Damage characterization of asphalt in laboratory by ultrasonic wave propagation”. Non- Destructive Testing in Civil Engineering, June 30th–July 3rd, Nantes, France.
Jiang, Z. Y., Ponniah, J. and Cascante, G. 2006. “Improved ultrasonic pulse velocity technique for bituminous material characterization”. Transportation Association of Canada.‏
Khalili, M. and Karakouzian, M. 2015. “Feasibility of ultrasonic measurements for characterizing rheological properties of asphalt binders”. Constr. Build. Mater., 75: 220-226.
Larcher, N., Takarli, M., Angellier, N., Petit, C. and Sebbah, H. 2015. “Towards a viscoelastic mechanical characterization of asphalt materials by ultrasonic measurements”. Mater. Struct., 48(5): 1377-1388.‏
Liapis, I. and Likoydis, S. 2012. “Use of electric arc furnace slag in thin skid–resistant surfacing”. Proc.-Soc. Behav. Sci, 48: 907-918.‏
Majhi, D., Karmakar, S. and Roy, T. K. 2017. “Reliability of ultrasonic pulse velocity method for determining dynamic modulus of asphalt mixtures”. Mater. Today: Proc., 4(9): 9709-9712.
Modarres, A. and Alinia Bengar, P. 2019. “Investigating the indirect tensile stiffness, toughness and fatigue life of hot mix asphalt containing copper slag powder”. Int. J. Pavement Eng., 20(8): 977-985.‏
Motevalizadeh, S. M., Sedghi, R. and Rooholamini, H. 2020. “Fracture properties of asphalt mixtures containing electric arc furnace slag at low and intermediate temperatures”. Constr. Build. Mater., 240: 117965.‏
Nabiun, N. and Khabiri, M. M. 2016. “Mechanical and moisture susceptibility properties of HMA containing ferrite for their use in magnetic asphalt”. Constr. Build. Mater., 113: 691-697.‏
Norambuena-Contreras, J., Castro-Fresno, D., Vega-Zamanillo, A., Celaya, M. and Lombillo-Vozmediano, I. 2010. “Dynamic modulus of asphalt mixture by ultrasonic direct test”. Ndt & E Int., 43(7): 629-634.
Perez, I., Pasandin, A. R. and Medina, L. 2011. “Hot mix asphalt using C&D waste as coarse aggregates”. Mater. Design, 36: 840-846.
Rodríguez-Fernández, I., Lastra-González, P., Indacoechea-Vega, I. and Castro-Fresno, D. 2021. “Technical feasibility for the replacement of high rates of natural aggregates in asphalt mixtures”. Int. J. Pavement Eng., 22(8): 940-949.‏
Rose, J. L. 2014. “Ultrasonic guided waves in solid media”. Cambridge University Press.‏
Sztukiewicz, R. J. 1991. “Application of ultrasonic methods in asphalt concrete testing”. Ultrasonics, 29(1): 5-12. doi.org/10.1016/0041-624X(91)90167-7.
Tigdemir, M., Kalyoncuoglu, S. F. and Kalyoncuoglu, U. Y. 2004. “Application of ultrasonic method in asphalt concrete testing for fatigue life estimation”. NDT & E Int., 37(8): 597-602.‏
Vaitkus, A., Čygas, D., Laurinavičius, A., Vorobjovas, V. and Perveneckas, Z. 2016. “Influence of warm mix asphalt technology on asphalt physical and mechanical properties”. Constr. Build. Mater., 112: 800-806.‏
Van Velsor, J. K., Premkumar, L., Chehab, G. and Rose, J. L. 2011. “Measuring the complex modulus of asphalt concrete using ultrasonic testing”. J. Eng. Sci. Technol. Rev., 4(2).
Vuorinen, M. and Hartikainen, O. P. 2001. “A new ultrasonic method for measuring stripping resistance of bitumen on aggregate”. Road Mater. Pavement Design, 2(3): 297-309.‏
Wu, J., Wang, L. and Meng, L. 2017. “Analysis of mineral composition and microstructure of gravel aggregate based on XRD and SEM”. Road Mater. Pavement Design, 18(S3): 139-148.‏
Wang, L., Song, Z. and Gong, C. 2022. “Power ultrasound on asphalt viscoelastic behavior analysis”. Case Stud. Constr. Mater., 16: e01012.