مخلوط میکروسرفیسینگ اصلاح‌شده با قیر امولسیونی حاوی پلی فسفریک اسید در ترکیب با فیلر سرباره فولاد جایگزین فیلر مصالح طبیعی: ارزیابی آزمایشگاهی و طرح اختلاط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گرایش راه و ترابری، دانشکده مهندسی عمران، دانشگاه یزد

2 دانشیار، دانشکده مهندسی عمران، دانشگاه یزد

3 دانشجوی دکتری گرایش راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم و ‌صنعت ایران، تهران

چکیده

یکی از اقدامات مؤثر در نگهداری پیشگیرانه راه‌ها استفاده از آسفالت حفاظتی میکروسرفیسینگ است. پژوهش حاضر با هدف بررسی اصلاح قیر امولسیون با پلی فسفریک اسید و امکان‌سنجی استفاده از پودر سرباره فولاد به‌جای فیلر معمولی مصالح سنگی در طراحی مخلوط میکروسرفیسینگ برای بهبود عملکرد نهایی آن انجام شد. برای این منظور، ابتدا از پلی فسفریک اسید در درصدهای 4/0، 8/0، 2/1 و 6/1 درصد بر اساس وزن قیر باقی‌مانده جهت اصلاح قیر امولسیون استفاده گردید. ارزیابی قیرهای امولسیون اصلاح‌شده با استفاده از شاخص‌های فیزیکی ویسکوزیته سیبولت‌فیورل، نقطه نرمی، درجه نفوذ و حساسیت حرارتی انجام شد. سپس از قیر امولسیون اصلاح‌شده با درصد بهینه به‌منظور استفاده در مخلوط‌های میکروسرفیسینگ استفاده گردید. مخلوط‌های میکروسرفیسینگ با پنج ترکیب مختلف حاوی فیلر سرباره فولادی در سطوح 0، 5/2، 0/5، 5/7 و 0/10 درصد بر اساس وزن کل سنگدانه به‌عنوان جایگزینی برای مصالح عبوری از الک 075/0 میلی‌متر تهیه شد. ارزیابی مخلوط‌های آسفالتی به‌واسطه آزمایش‌های چسبندگی مرطوب، سایش در شرایط مرطوب، بارگذاری چرخ-جابه‌جایی و بارگذاری چرخ- چسبندگی ماسه انجام شد. نتایج آزمایش‌های قیری نشان داد، استفاده از پلی فسفریک اسید منجر به بهبود خواص قیر شامل کاهش درجه نفوذ، افزایش نقطه نرمی و کاهش حساسیت حرارتی می‌شود. با افزایش درصد پلی فسفریک اسید تا 8/0 درصد قیر باقی‌مانده، تغییرات درجه نفوذ و نقطه نرمی قابل‌توجه است و باعث بهبود عملکرد قیر امولسیون می‌گردد. نتایج آزمایش‌های آسفالتی بر روی نمونه‌ها نشان داد که مخلوط حاوی 5/7 و 10 درصد فیلر سرباره فولاد بهترین عملکرد را در میان مخلوط‌ها ایجاد می‌کند. به‌طوری‌که عملکرد میکروسرفیسینگ را از نظر چسبندگی، مقاومت در برابر سایش، قیر زدگی و جابجایی عمودی به ترتیب 2/29، 5/64، 6/18 و 0/44 درصد در مخلوط حاوی 5/7 درصد سرباره و 0/25، 3/64، 3/23 و 9/42 درصد در مخلوط حاوی 10 درصد سرباره بهبود بخشیدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Microsurfacing Treatment Modified with Bitumen Emulsion Containing Polyphosphoric Acid in Combination with Steel Slag Filler as an Alternative to Natural Material Filler: Experimental Assessment and Mixture Design

نویسندگان [English]

  • mohammadjavad akhavan bahabadi 1
  • Mohammad Mehdi Khabiri 2
  • Mahdi Zalnezhad 3
1 Department of Civil Engineering, Yazd University
2 Civil Engineering Departement,Yazd University
3 PhD Candidate of Road & Transportation Engineering, Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
چکیده [English]

The present research seeks to investigate the modification of bitumen emulsion with polyphosphoric acid and study the feasibility of using steel slag powder as an alternative to conventional rock material filler in the design of microsurfacing mixture in an attempt to improve the ultimate performance of the mixture. For this purpose, firstly, polyphosphoric acid was used to modify the bitumen emulsion at 0.4, 0.8, 1.2, and 1.6 wt% (by weight of residual bitumen). Next, the optimally modified bitumen emulsion was used in different microsurfacing mixtures. Five different mixtures of micro surfacing containing steel slag filler at 0, 2.5, 5.0, 7.5, and 10.0 wt% (by total weight of aggregates), as an alternative to material passing through 0.075 mm sieve, were prepared. The asphalt mixtures were assessed by means of wet cohesion test, wet track abrasion test, loaded wheel-displacement, and loaded wheel-sand adhesion tests. Results of the bitumen tests showed that the use of the polyphosphoric acid tends to improve the bitumen properties in terms of decreased penetration, increased softening point, and reduced thermal sensitivity. With increasing the dosage of the polyphosphoric acid to up to 0.8 wt% by weight of the residual bitumen, significant changes were seen in the penetration and the softening point, which led to improved performance of the bitumen emulsion. Results of the asphalt tests on the samples showed that the mixtures containing steel slag filler at 7.5 and 10.0 wt% outperformed the other mixtures. Indeed, the mixture containing steel slag at 7.5 wt% could improve the cohesion, abrasion resistance, bleeding resistance, and vertical displace resistance by 29.2, 64.5, 18.6, and 44.0%, respectively. The corresponding figures for the mixture containing the slag at 10.0 wt% were 25.0, 64.3, 23.3, and 42.9 wt%, respectively.

کلیدواژه‌ها [English]

  • bitumen emulsion modification
  • steel slag
  • polyphosphoric acid
  • micro-surfacing
  • and preventive measure
چاوشی نجف آبادی، س.، خبیری، م. و خانی سانیج، ح. 1397. "امکان­سنجی افزودن پلی‏فسفریک اسید به قیر اصلاح‌شده با پودر لاستیک جهت کاهش مخاطرات زیست محیطی لاستیک­های بازیافتی". اولین کنفرانس ملی نقش مهندسی عمران در کاهش مخاطرات، کرمانشاه.  https://civilica.com/doc/869817
حاجی کریمی، پ.، راهی، م.، بابایی عاشورآبادی، ا. و مقدس نژاد، ف. 1398. "بررسی تأثیر اصلاح قیر با پلی‏فسفریک اسید بر مشخصات ویسکوالاستیک قیر". یازدهمین همایش قیر و آسفالت ایران.   https://civilica.com/doc/966107
Ahmedzade, P. and Sengoz, B. 2009. “Evaluation of steel slag coarse aggregate in hot mix asphalt concrete”. J. Hazard. Mater., 165(1-3): 300-305.
Akhavan-behabadi, M. J., Khabiri, M. M. and Fotohi-Firozabadi, A. R. 2016. “Numerical analysis of stress intensity factors in airport asphalt pavement by aircraft wheel loading”. J. Transp. Res., 13(3): 14-30. http://www.trijournal.ir/article_48163.html
Asi, I. M., Qasrawi, H. Y. and Shalabi, F. I. 2007. “Use of steel slag aggregate in asphalt concrete mixes”. Can. J. Civ. Eng., 34(8): 902-911. https://doi.org/10.1139/l07-025
ASTM D7497. 2021. “Standard practice for recovering residue from emulsified asphalt using low-temperature evaporative technique”. American Society of Testing and Materials, West Conshohocken, PA, USA.
Baumgardner, G. L. 2010. “Why and how of polyphosphoric acid modification-an industry perspective”. Asphalt Paving Technology, 2010, Sacramento, CA, 79: 663-678.
Baumgardner, G. L., Masson, J., Hardee, J. R., Menapace, A. M. and Williams, A. G. 2005. “Polyphosphoric acid modified asphalt: Proposed mechanisms”. J. Assoc. Asphalt Paving Technol., 74: 283-305.
Behnood, A. and Ameri, M. 2012. “Experimental investigation of stone matrix asphalt mixtures containing steel slag”. Scientia Iranica, 19(5): 1214-1219. https://doi.org /10.1016/j.scient.2012.07.007
Chen, Z., Gong, Z., Jiao, Y., Wang, Y., Shi, K. and Wu, J. 2020. “Moisture stability improvement of asphalt mixture considering the surface characteristics of steel slag coarse aggregate”. Constr. Build. Mater., 251: 118987. https://doi.org/ 10.1016/j.conbuildmat.2020.118987
Choudhary, J., Kumar, B. and Gupta, A. 2020. “Utilization of solid waste materials as alternative fillers in asphalt mixes: A review”. Constr. Build. Mater., 234: 117271. https://doi.org/10.1016/j.conbuildmat. 2019.117271
Cui, P., Wu, S., Xiao, Y., Yang, C. and Wang, F. 2020. “Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing”. Constr. Build. Mater., 239: 117870. https://doi.org/ 10.1016/j.conbuildmat.2019.117870
D’Angelo, J. A. 2009. “Effect of polyphosphoric acid on asphalt binder properties”. Workshop on Polyphosphoric Acid Modification of Asphalt Binders, Minneapolis, Minnesota, USA.
Dulaimi, A., Shanbara, H. K. and Al-Rifaie, A. 2020. “The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue”. Constr. Build. Mater., 250: 118808. https://doi.org/10.1016/j.conbuildmat. 2020.118808
Edwards, Y., Tasdemir, Y. and Isacsson, U. 2006. “Rheological effects of commercial waxes and polyphosphoric acid in bitumen 160/220-low temperature performance”. Fuel, 85(7): 989-997. https://doi.org/10.1016/j.fuel.2005.09.014
Galán-Arboledas, R. J., Álvarez de Diego, J., Dondi, M. and Bueno, S. 2017. “Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials”. J. Clean. Prod, 142: 1778-1788. https:// doi.org/10.1016/j.jclepro.2016.11.110
Hassanzadeh Khabbaz, E. 2020. “Evaluation of mechanical properties of hot mix asphalt mixture comtainig electric arc furnace (EAF) steel slag”. J. Transp. Res., 17(3): 19-32. http://www.trijournal.ir/article 112904.html
Hojoung, L., Dongbok, J., Hyunwook, K., In-Ta, I. K., Kibyung, K. and Jaehoon, L. 2017. “Experimental and numerical analysis of warm mix asphalt pavement prepared using steel slag and RAP”. Int. J. Highway Eng., 19(2): 55-65.
Hu, C., Zhao, J., Leng, Z., Partl, M. N. and Li, R. 2019. “Laboratory evaluation of waterborne epoxy bitumen emulsion for pavement preventative maintenance application”. Constr. Build. Mater., 197: 220-227. https://doi.org/10.1016/j.conbuildmat.2018.11.223
Hunt, L. and Boyle, G. E. 2000. “Steel slag in hot mix asphalt concrete”. Final Report, State research Project No. 511, Oregon Department of Transportation.
ISSA. 2010. “Recommended performance guideline for micro surfacing A143”.  International Slurry Surfacing Association.
ISSA. 2017a. “Test method for measurement of excess asphalt in bituminous mixtures by use of a loaded wheel tester and sand adhesion”. Technical Bulletin 109, International Slurry Surfacing Association.
ISSA. 2017b. “Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes”. Technical Bulletin 147, International Slurry Surfacing Association.
ISSA. 2017c. “Test method for wet track abrasion of slurry surfacing systems”. Technical Bulletin 100, International Slurry Surfacing Association.
ISSA. 2017d. “Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics”. Technical Bulletin 139, International Slurry Surfacing Association.
ISSA. 2017e. “Trial mix procedure for slurry seal design”. Technical Bulletin 113, International Slurry Surfacing Association.
Izadi, A., Zalnezhad, M., Zalnezhad, H. and Bozorgimakrani, P. 2021. “Laboratory evaluation of coloured microsurfacing surface treatment performance contains iron oxide red pigments”. J. Transp. Infrastruct. Eng., 6(4): 99-120. https://doi.org/10.22075/jtie.2020.20189.1449
Jin, T., M. Warid, M. N., Idham, M., Hainin, M. R., Yaacob, H., Hassan, N., Ismail, C. R. and Afiqah, R. 2019. “Modification of emulsified bitumen using styrene-butadiene rubber (SBR)”. IOP Conference Series: Materials Science and Engineering, 527: 012050. https://doi.org/10.1088/1757-899X/527/1/012050
Johannes, P. T. D. 2014. “Development of an improved mixture design framework for slurry seals and micro-surfacing treatments”. Ann Arbor, MI, ProQuest LLC. https://search.library.wisc.edu/catalog/ 9910207940402121
Keymanesh, M. R., Ziari, H., Zalnezhad, H. and Zalnezhad, M. 2021. “Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler”. Constr. Build. Mater., 269: 121336. https://doi.org /10.1016/j.conbuildmat.2020.121336
Kodrat, I., Sohn, D. and Hesp, S. A. M. 2007. “Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified materials”. Transp. Res.  Record, 1998(1): 47-55. https://doi.org/ 10.3141/1998-06
Lesueur, D. 2009. “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification”. Adv. Colloid Interface Sci., 145(1): 42-82. https://doi.org /10.1016/j.cis.2008.08.011
Li, X., Clyne, T., Reinke, G., Johnson, E. N., Gibson, N. and Kutay, M. E. 2011. “Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid”. Transp. Res. Record, 2210(1): 47-56.
Li, C., Chen, Z., Wu, S., Li, B., Xie, J. and Xiao, Y. 2017. “Effects of steel slag fillers on the rheological properties of asphalt mastic”. Constr. Build. Mater., 145: 383-391. https://doi.org /10.1016/j.conbuildmat. 2017.04.034
Mitchell, M., Link, R., Prapaitrakul, N., Han, R., Jin, X., Epps Martin, A. and Glover, C. 2010. “Comparative study on recovered binder properties using three asphalt emulsion recovery methods”. J. Test. Eval., 38: ‎653-659. https://doi.org/10.1520/JTE102739
Rautela, R., Arya, S., Vishwakarma, S., Lee, J., Kim, K.-H. and Kumar, S. 2021. “E-waste management and its effects on the environment and human health”. Sci. Total Environ., 773: 145623. https://doi.org /10.1016/j.scitotenv.2021.145623
Shen, D. H., Wu, C. M. and Du, J. C. 2009. “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture”. Constr. Build. Mater., 23(1): 453-461. https://doi.org/10.1016/j.conbuildmat.2007.11.001
Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A. and Ortega-López, V. 2017. “EAF slag in asphalt mixes: A brief review of its possible re-use”. Resour., Conserv. Recy., 120: 176-185. https://doi.org/10.1016/j.resconrec.2016.12.009
Teixeira, J., Schumacher, A., Pires, P., Castelo Branco, V. and Martins, H. 2019. “Expansion level of steel slag aggregate effects on both material properties and asphalt mixture performance”. Transp. Res.  Record, 2673: 036119811983551. https://doi.org/10.1177/0361198119835513
Varanda, C., Portugal, I., Ribeiro, J., Silva, A. and Silva, C. M. 2016. “Influence of polyphosphoric acid on the consistency and composition of formulated bitumen: standard characterization and NMR insights”. J. Anal. Method. Chem., 2016.
Wang, G. 2016. “Slag use in asphalt paving”. pp. 201-238. https://doi.org/10.1016/B978-0-08-100381-7.00010-0
Wang, A., Shen, S., Li, X. and Song, B. 2019. “Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation”. Constr. Build. Mater., 201: 303-313. https://doi.org/ 10.1016/j.conbuildmat.2018.12.164 
Zalnezhad, M. and Hesami, E. 2020. “Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture”. J. Traffic Transp. Eng. (English Edition), 7(2): 215-226. https://doi.org/10.1016/j.jtte.2018.12.005