بررسی آزمایشگاهی و مدل‏سازی عددی میکرومکانیکی رفتار ویسکوالاستیک ماستیک آسفالتی حاوی فیلر آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

چکیده

درصد پرشدگی حجمی و نوع فیلر بر خواص رئولوژیک و مکانیکی مواد مرکب قیری مؤثر است. این تأثیر می‏تواند ناشی از اندرکنش شیمیایی بین فیلر و قیر و یا پدیده­های فیزیکی ساده ‌باشد. بررسی تأثیر فیلر بر عملکرد ماستیک آسفالتی مسئله­ای مهم برای درک عملکرد مخلوط آسفالتی است. در این پژوهش، دو رویکرد آزمایشگاهی و مدل‏سازی عددی مورد استفاده قرار گرفته است. خواص رئولوژیک نمونه‌های ماستیک آسفالتی ساخته شده با قیر خالص و فیلر آهکی با نسبت‌های پرشدگی مختلف با استفاده از آزمایش جاروب فرکانسی تعیین شده است. نتایج آزمایش نشان داد که افزایش درصد پرشدگی حجمی فیلر در ماستیک آسفالتی منجر به تغییر مقادیر مدول برشی مختلط (G*) و زاویه فاز (δ) آن با رفتاری غیرخطی می‏شود که موسوم به پدیده سخت‏شوندگی است. با در نظر گرفتن مفهوم ناحیه انتقالی بین فیلر و قیر، شاخصی با عنوان نسبت پرشدگی مؤثر (EVFR) برای توجیه این پدیده معرفی شده است. برای پیش‌بینی رفتار ویسکوالاستیک ماستیک آسفالتی بر اساس ویژگی‌های مکانیکی قیر و فیلر از شبیه‌سازی با روش اجزای محدود (FEM) استفاده شده است. دقت این مدل‌ها بر اساس محاسبه اختلاف نسبی بین مدول برشی مختلط (G*) آزمایشگاهی و مدول برشی مختلط پیش‌بینی شده توسط مدل ارزیابی شده است. نتایج این ارزیابی نشان‌دهنده این است که معرفی نسبت پرشدگی مؤثر (EVFR) به مدل عددی می‏تواند با تقریب خوبی منجر به افزایش دقت نتایج برای پیش‌بینی رفتار ویسکوالاستیک نمونه‌های ماستیک آسفالتی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Micromechanical Modeling of the Viscoelastic Behavior of Asphalt Mastic Containing Limestone Filler

نویسندگان [English]

  • Fereidoon Moghadas Nejad
  • Pouria Hajikarimi
  • Ali Khodaii
Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
چکیده [English]

The volume filling ratio and type of filler significantly influence the rheological and mechanical properties of bituminous composites. This effect can stem from either chemical interactions between the filler and bitumen or simple physical phenomena. Understanding the influence of filler on asphalt mastic performance is crucial for comprehending the behavior of asphalt mixtures. This study employs both experimental and numerical modeling approaches. The rheological properties of asphalt mastic samples made with pure bitumen and limestone filler at various filler contents were determined using frequency sweep tests. The experimental results indicated that increasing the volume filling ratio in asphalt mastic leads to non-linear changes in the values of the complex shear modulus (G*) and phase angle (δ), known as the stiffening phenomenon. Considering the concept of the transitional zone between filler and bitumen, a parameter called the Effective Volume Filling Ratio (EVFR) was introduced to explain this phenomenon. To predict the viscoelastic behavior of asphalt mastic based on the mechanical properties of bitumen and filler, finite element method (FEM) simulations were utilized. The accuracy of these models was evaluated by calculating the relative difference between the experimental complex shear modulus (G*) and the complex shear modulus predicted by the model. The results of this evaluation indicated that incorporating the Effective Volume Filling Ratio (EVFR) into the numerical model can significantly enhance the accuracy of the predictions for the viscoelastic behavior of asphalt mastic samples.

کلیدواژه‌ها [English]

  • Asphalt Mastic
  • Limestone Filler
  • Numerical Micromechanical Modeling
  • Viscoelastic
  • Finite Element Modeling
Alfaqawi, R. M., Fareed, A., Zaidi, S. B. A., Airey, G. D. and Rahim, A. 2022. “Effect of hydrated lime and other mineral fillers on stiffening and oxidative ageing in bitumen mastic”. Constr. Build. Mater., 315: 125789. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125789
Bastidas-Martínez, J. G., Rondón-Quintana, H. A. and Muniz de Farias, M. 2020. “Behavior of asphalt mastics containing different materials as filler”. Can. J. Civ. Eng., 48(4): 347-355. https://doi.org/10.1139/cjce-2019-0342
Bi, Y., Guo, F., Zhang, J., Pei, J. and Li, R. 2021. “Correlation analysis between asphalt binder/asphalt mastic properties and dynamic modulus of asphalt mixture”. Constr. Build. Mater., 276: 122256. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.122256
Buttlar, W. G., Bozkurt, D., Al-Khateeb, G. G. and Waldhoff, A. S. 1999. “Understanding asphalt mastic behavior through micromechanics”. Transport. Res. Record, 1681(1): 157-169.
Dai, Q. 2011. “Two- and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images”. Constr. Build. Mater., 25(2). https://doi.org/10.1016/j.conb uildmat.2010.06.066
Delaporte, B., Di Benedetto, H., Chaverot, P. and Gauthier, G. 2009. “Linear viscoelastic properties of bituminous materials including new products made with ultrafine particles”. Road Mater. Pavement Des., 10(1): 7-38.
Di Benedetto, H., Olard, F., Sauzéat, C. and Delaporte, B. 2004. “Linear viscoelastic behaviour of bituminous materials: From binders to mixes”. Road Mater. Pavement Des., 5(sup1): 163-202.
El Haloui, Y., Fakhari Tehrani, F., Absi, J., Courreges, F., El Omari, M., Allou, F. and Petit, C. 2020. “Modelling of asphalt mixes based on X-ray computed tomography and random heterogeneous generation”. Int. J. Pavement Eng., 21(13): 1626-1637.
Faheem, A. F. and Bahia, H. U. 2010. “Modelling of asphalt mastic in terms of filler-bitumen interaction”. Road Mater. Pavement Des., 11(sup1): 281-303.
Fakhari Tehrani, F., Absi, J., Allou, F. and Petit, C. 2013. “Heterogeneous numerical modeling of asphalt concrete through use of a biphasic approach: Porous matrix/inclusions”. Comput. Mater. Sci., 69: 186-196. https://doi.org/ https://doi.org/10.1016/j.commatsci.2012.11.041
Hajikarimi, P., Fakhari Tehrani, F., Moghadas Nejad, F., Absi, J., Khodaii, A., Rahi, M. and Petit, C. 2019. “Mechanical behavior of polymer-modified bituminous mastics. II: Numerical approach”. J. Mater. Civ. Eng., 31(1): 4018338.
Hajikarimi, P. and Moghadas Nejad, F. 2021. “Applications of viscoelasticity: Bituminous materials characterization and modeling”. Elsevier.
Hajikarimi, P., Sadat Hosseini, A., Maniei, S., Rahi, M., Fakhari Tehrani, F. and Absi, J. 2023. “Effective volume filling ratio of siliceous fillers within bituminous composites: Experimental and micromechanical modelling”. Road Mater. Pavement Des., 24(6): 1482-1506. https://doi.org/10.1080/14680629.2022.2077811
Kim, R. Y. 2009. “Modeling of asphalt concrete”. Mc-Graw Hill.
Masoud, R., Alan, C. and Daniel, P. 2015. “New conceptual model for filler stiffening effect on asphalt mastic of microsurfacing”. J. Mater. Civ. Eng., 27(11): 4015033. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001264
Mo, L. T., Huurman, M., Wu, S. P. and Molenaar, A. A. A. 2007. “Investigation into stress states in porous asphalt concrete on the basis of FE-modelling”. Finite Elem. Anal. Des., 43(4): 333-343. https://doi.org/https://doi.org/ 10.1016/j.finel.2006.11.004
Ottosen, N. S. and Ristinmaa, M. 2005. “The mechanics of constitutive modeling”. Elsevier.
Sadat Hosseini, A., Hajikarimi, P. and Fini, E. H. 2024. “Simulation of sustainable structural composites produced from waste plastics and bitumen”. Clean Techn. Environ. Policy. https://doi.org/10.1007/s10098-024-02874-3
Shashidhar, N. and Shenoy, A. 2002. “On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics”. Mech. Mater., 34(10): 657-669. https://doi.org/https://doi.org/10.1016/S0167-6636(02)00 166-7
Williams, M. L., Landel, R. F. and Ferry, J. D. 1955. “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids”. J. Amer. Chem. Soc., 77(14): 3701-3707.
You, Z., Adhikari, S. and Dai, Q. 2008. “Three-dimensional discrete element models for asphalt mixtures”. J. Eng. Mech., 134(12): 1053-1063. https://doi.org/10.1061/ASCE0733-93992008134:121053