Ahmad, J., Zaid, O., P´erez, C. L. C., et al. 2022. “Experimental research on mechanical and permeability properties of nylon fiber reinforced recycled aggregate concrete with mineral admixture”. Appl. Sci.,
https://doi.org /10.3390/app12020554
Althoey, F., Zaid, O., de-Prado-Gil, J., et al. 2022. “Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete”. J. Build. Eng., 54: 104610.
https://doi.org/10.1 016/j.jobe.2022.104610
Aslam, F., Zaid, O., Althoey, F., et al. 2022. “Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete”. Struct. Concrete, 24(2): 2440-2459.
https://doi.org/10.1002/suco.2022 00183
Chahal, N., Siddique, R. and Rajor, A. 2012. “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume”. Constr. Build. Mater., 37: 645-651.
De Muynck, W., De Belie, N. and Verstraete, W. 2009. “Microbial carbonate precipitation in construction materials: A review”. Ecol. Eng., 36: 118-136,
https://doi.org/10.1016/j.ecoleng .2009.02.006
De Rooij, M., Van Tittelboom, K., De Belie, N. and Schlangen, E. 2013. “Self-healing phenomena in cement-based materials”. RILEM Technical Committee 221-SHC.
Gupta, S., Kua, H. W. and Pang, S. D. 2018. “Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration”. Cement Concrete Compos., 86: 238-254.
Huang, H., Ye, G., Qian, C. and Schlangen, E. 2016. “Self-healing in cementitious materials: Materials, methods and service conditions”. Mater. Design, 92: 499-511.
Iheanyichukwu, C. G., Umar, S. A. and Ekwueme, P. C. 2018. “A review on self-healing concerete using bacteria”. Sustain. Struct. Mater., 1(2): 12-20.
Joshi, S., Goyal, S., Mukherjee, A. and Reddy, M. S. 2017. “Microbial healing of cracks in concrete: A review”. J. Ind. Microbiol. Biotech., 44(11): 1511-1525.
Khaliq, W. and Ehsan, M. B. 2016. “Crack healing in concrete using various bio influenced self-healing techniques”. Constr. Build. Mater., 102: 349-357.
Krishnapriya, S., D. L. Venkatesh Babu and P. A. G (2015). "Isolation and identification of bacteria to improve the strength of concrete." Microbiol. Res., 174: 48-55.
Lee, Y. S., Kim, H. J. and Park, W. 2017. “Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus”. J. Microbiol., 55: 440-447.
Maglad, A. M., Zaid, O., Arbili, M. M., et al. 2022. “A study on the properties of geopolymer concrete modified with nano graphene oxide”. Build., 12(8): 1066. https:// doi.org/10.3390/bu ildings12081066
Martínez-García, R., Jagadesh, P., Zaid, O., et al. 2022. “The present state of the use of waste wood ash as an eco-efficient construction material: A review”. Mater., 15(15): 5349. https://doi.org/10.3390/ma15155349
Noori Shahrabadi, A., Hassani, A. and Bakhshi, B. 2021. “Effect of bacteria on self-healing of bio-concrete by increasing compressive strength”. J. Transport. Infrastruct. Eng., 7(2): 41-50. [In Persian]
Singh, N., Ahmad, J. and Mir, S. S. 2018. “Assessment of ureolytic bacteria for self-healing concrete”. Int. J. Recent Sci. Res., 9(3): 25350-25355.
Tang, W., Kardani, O. and Cui, H. 2015. “Robust evaluation of self-healing efficiency in cementitious materials- A review”. Constr. Build. Mater., 81: 233-247.
https://doi.org/10 .1016/j.conbuildmat..02.054
Termkhajornkit, P., Nawa, T., Yamashiro, Y. and Saito, T. 2009. “Self-healing ability of fly ash–cement systems”. Cement Concrete Compos., 31: 195-203.
https://doi.org//j.cemc oncomp. 2008.12.009
Van Tittelboom, K. and De Belie, N. 2013. “Self-healing in cementitious materials- a review”. Mater., 6(6): 2182-2217.
https://doi.org/10.33 90/ma6062182
Vijay, K., Murmu, M. and Deo, S. V. 2017. “Bacteria based self healing concrete- A review”. Constr. Build. Mater., 152: 1008-1014.
Wang, J. Y., Soens, H., Verstraete, W. and De Belie, N. 2014. “Self-healing concrete by use of microencapsulated bacterial spores”. Cement Concrete Res., 56: 139-152.
Worrell, E., Price, L., Martin, N., et al. 2001. “Carbon dioxide emission from the global cement industry”. Ann. Rev. Energy Environ., 26: 303-329,
https://doi.org/10.1146/annurev. energy.26.1.303
Zaid, O., Ahmad, J., Siddique, M. S., et al. 2021a. “A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate”. Sci. Rep. 11282.
Zaid, O., Ahmad, J., Siddique, M. S. and Aslam, F. 2021b. “Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete”. Front. Mater., 8: 665625.
https://doi.org/10.3389 /fmats.2021 .665625
Zaid, O., Roshan, S., Hashmi, Z, Aslam, F. and Alabduljabbar, H. 2021c. “Experimental study on mechanical performance of recycled fine aggregate concrete reinforced with discarded carbon fibers”. Front. Mater., 8. https://doi .org/10.3389/fmats.2021.771423
Zaid, O., Hashmi, S. R. Z., Aslam, F., et al. 2022a. “Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete”. Diam. Relat. Mater., 108883.
https://doi.org/10.1016/j.diam ond.2022.108883
Zaid, O., Martínez-García, R. and Aslam, F. 2022b. “Influence of wheat straw ash as partial substitute of cement on properties of high-strength concrete incorporating graphene oxide”. J. Mater. Civ. Eng., 34(11).
https://doi .org/10.1061/(ASCE)MT.1943-5533.0004415
Zaid, O., Mukhtar, F. M., Martinez García, R., et al. 2022c. “Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler”. Case Stud. Constr. Mater., e00939.
https://doi.org/10.101 6/j.cscm.2022.e00939
Zaid, O., Martínez-García, R., Abadel, A. A., et al. 2022d. “To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates”. Arch. Civ. Mech. Eng., 22: 114.
https://doi.org/10.1007/ s43452-022-00436-2
Zhang, J., Liu, Y., Feng, T., Zhou, M., Zhao, L., Zhou, A. and Li, Z. 2017. “Immobilizing bacteria in expanded perlite for the crack self-healing in concrete”. Constr. Build. Mater., 148: 610-617.
Zhutovsky, S. and Nayman, S. 2022. “Modeling of crack-healing by hydration products of residual cement in concrete”. Constr. Build. Mater., 340: 127682. https:// doi.org/10.1016/j.conbuil dmat.2022.127682