بررسی آزمایشگاهی مشخصات شکست و خستگی در مخلوط آسفالتی با استخوان‌بندی سنگدانه‌ای حاوی تراشه آسفالت بازیافتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی، تهران، ایران.

2 دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی، تهران، ایران

3 دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی، تهران، ایران.

چکیده

کیفیت روسازی تأثیر مهمی بر ایمنی، سرویس‌دهی و هزینه‌های نگهداری راه‌ها دارد. اخیراً، استفاده از مخلوط‌های آسفالتی تراشیده‌شده به دلیل مزایای زیست‌محیطی و اقتصادی مورد توجه قرار گرفته است. اما گرم کردن این مصالح برای استفاده مجدد می‌تواند باعث پیری و شکنندگی آسفالت شود. در نهایت، این مخلوط‌ها در دمای کم مستعد ترک‌خوردگی می‌شوند. بنابراین، با وجود مزایای زیست‌محیطی و اقتصادی، برای اطمینان از دوام و طول عمر روسازی‌های با استخوان‌بندی سنگدانه‌ای (SMA)، باید عملکرد ناپایدار و پتانسیل افزایش سختی و ترک‌خوردگی آن‌ها به دقت مدیریت شود. در این پژوهش، به بررسی خصوصیات شکست مخلوط آسفالتی با استخوان‌بندی سنگدانه‌ای در دمای کم (12- درجه سلسیوس) و خستگی مخلوط در دمای متوسط (25 درجه سلسیوس) ‌پرداخته شد. بدین منظور، از مقادیر مختلف (صفر، 15 و 30 درصد) تراشه‌های آسفالت بازیافتی به عنوان جایگزین سنگدانه در مخلوط‌های آسفالتی با استخوان‌بندی سنگدانه‌ای استفاده شده‌ و تأثیرات این جایگزینی در مشخصات مخلوط‌ها مورد بررسی قرار گرفت. در نهایت، انرژی شکست مخلوط‌های آسفالتی که از روغن جوانساز استفاده شده، بیشتر از مخلوط‌هایی است که بدون روغن جوانساز هستند. این افزایش انرژی شکست در دمای کم به‌طور قابل توجهی مشهود است. بررسی شاخص انعطاف‌پذیری (FI) نشان می‌دهد که با افزودن تراشه آسفالتی، بدون استفاده از روغن جوانساز، انعطاف‌پذیری حدود 30 درصد کمتر از نمونه شاهد می‌شود. اما با استفاده از روغن جوانساز، شاخص انعطاف‌پذیری تقریباً دو برابر بیشتر از نمونه شاهد می‌شود؛ به‌طوری که در بارگذاری مود اول 85 درصد و در مود دوم 113 درصد افزایش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Laboratory Investigation of Fracture and Fatigue Characteristics in Stone Mastic Asphalt (SMA) Mixtures Containing Reclaimed Asphalt Pavement (RAP)

نویسندگان [English]

  • Mansour Fakhri 1
  • Alireza Hadi 2
  • Morteza Ghanbari 3
1 Professor, Department of Road and Transportation, Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, I. R. Iran.
2 Department of Road and Transportation, Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, I. R. Iran.
3 Department of Road and Transportation, Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, I. R. Iran.
چکیده [English]

Pavement quality significantly impacts road safety, serviceability, and maintenance costs. Recently, the use of reclaimed asphalt mixtures has gained attention due to their environmental and economic benefits. However, reheating these materials for reuse can lead to asphalt aging and embrittlement. Consequently, these mixtures are susceptible to low-temperature cracking. Therefore, despite environmental and economic advantages, the unstable performance and potential for increased stiffness and cracking in stone mastic asphalt (SMA) pavements must be carefully managed to ensure durability and service life. This study investigates the fracture properties of SMA mixtures at low temperature (-12 °C) and fatigue behavior at intermediate temperature (25 °C. Different percentages (0%, 15%, and 30%) of reclaimed asphalt pavement (RAP) were used as a substitute for aggregate in SMA mixtures to examine the effects of this substitution on mixture properties. Results indicated that the fracture energy of asphalt mixtures using rejuvenating oil was higher than those without rejuvenating oil. This increase in fracture energy was significantly observed at low temperatures. The flexibility index (FI) analysis showed that adding asphalt shingles without rejuvenating oil reduced flexibility by about 30% compared to the control sample. However, using rejuvenating oil increased the flexibility index by almost twofold compared to the control sample; with an 85% increase in the first mode of loading and a 113% increase in the second mode.

کلیدواژه‌ها [English]

  • Flexible pavement
  • Stone mastic asphalt (SMA)
  • Reclaimed asphalt pavement (RAP)
  • Fracture test
  • Fracture energy
AASHTO T 393-21. 2021. Adopted- Determining the fracture potential of asphalt mixtures using the Illinois Flexibility Index Test (I-FIT).
Al Dughaishi, H., Al Lawati, J., Bilema, M., Babalghaith, A. M., Mashaan, N. S., Yusoff, N. I. M. and Milad, A. 2022. “Encouraging sustainable use of RAP materials for pavement construction in Oman: A Review”. Recy., 7(3): 35.
Aliha, M. R. M., Razmi, A. and Mansourian, A. 2017. “The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials”. Eng. Fract. Mech., 182: 322-336.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M. and Ayatollahi, M. R. 2012. “Mixed mode fracture resistance of asphalt concrete mixtures”. Eng. Fract. Mech., 93: 153-167. https://doi.org/10.1016/j.engfracmech.2012.06.015
Anderson, T. L. 2017. “Fracture mechanics: Fundamentals and applications”. CRC Press.
Anusha, T. M., Akhilesh, B. R. and Jagadeesh, H. S. 2021. “Performance studies on stone mastic asphalt mixes with reclaimed asphalt pavement”. Int. J. Recent Technol. Eng. (IJRTE), 10(4): 129-138. https://doi.org/10.35940/ijrte.d6503.1110421
Ayatollahi, M. R., Aliha, M. R. M. and Saghafi, H. 2011. “An improved semi-circular bend specimen for investigating mixed mode brittle fracture”. Eng. Fract. Mech., 78(1): 110-123. https://doi.org/10.1016/j.engfracmech.2010.10.001
Bahadori, A. M., Mansourkhaki, A. and Ameri, M. 2015. “A phenomenological fatigue performance model of asphalt mixtures based on fracture energy density”. J. Test. Eval., 43(1): 133-139.
Belay, S., Quezon, E. T. and Geremew, A. 2021. “Effect of selected conventional and non-conventional mineral fillers with "Enset" fibers on compaction characteristics of stone mastic asphalt pavement (SMAP)”. Jordan J. Civ. Eng., 15(1): 30-40.
Cardoso, J., Ferreira, A., Almeida, A. and Santos, J. 2023. “Incorporation of plastic waste into road pavements: A systematic literature review on the fatigue and rutting performances”. Constr. Build. Mater., 407: 133441.
Copeland, A. 2011. “Reclaimed asphalt pavement in asphalt mixtures: State of the practice”. US Department of Transportation, Federal Highway Administration.
Emami, A., Abdi Kordani, A. and Zarei, M. 2023. “Investigation of the rutting performance of modified stone matrix asphalt (SMA) using the dynamic creep and Hamburg Wheel-Tracking Device tests”. Adv. Mater. Process. Technol., 10(2): 373-392.
Fakhri, M., Shahryari, E. and Ahmadi, T. 2022. “Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA)”. Constr. Build. Mater., 326: 126780. https://doi.org/10.1016/j.conbuildmat.2022.126780
Fakhri, M., Ahmadi, T., Shahryari, E. and Jafari, M. 2023. “Evaluation of fracture behavior of stone mastic asphalt (SMA) containing recycled materials under different loading modes at low temperatures”. Constr. Build. Mater., 386: 131566.
Guo, Q., Chen, Z., Liu, P., Li, Y., Hu, J., Gao, Y. and Li, X. 2021. “Influence of basalt fiber on mode I and II fracture properties of asphalt mixture at medium and low temperatures”. Theor. Appl. Fract. Mech., 112: 102884.
Hirama, A. 2014. “The actual situation of recycled asphalt mixture in Japan”. Seminar on Pavement Technology Exchange Between U.S.A. and Japan, 4 December 2014, Tokyo.
Imaninasab, R., Loria-Salazar, L. and Carter, A. 2022. “Integrated performance evaluation of asphalt mixtures with very high reclaimed asphalt pavement (RAP) content”. Constr. Build. Mater., 347: 128607.
Kamboozia, N., Saed, S. A. and Mousavi Rad, S. 2021. “Rheological behavior of asphalt binders and fatigue resistance of SMA mixtures modified with nano-silica containing RAP materials under the effect of mixture conditioning”. Constr. Build. Mater., 303: 124433. https://doi.org/10.1016/j.conbuildmat.2021.124433
Karimi, M. M., Darabi, M. K., Jahanbakhsh, H., Jahangiri, B. and Rushing, J. F. 2020. “Effect of steel wool fibers on mechanical and induction heating response of conductive asphalt concrete”. Int. J. Pavement Eng., 21(14): 1755-1768.
Korishetti, V., Chikkabagewadi, S. and Kulkarni, S. 2023. “Recycling of polymer modified bituminous mixes with reclaimed asphalt pavement-An experimental study”. Mater. Proc. https://doi.org/10.1016/j.matpr. 2023.04.397
Laboratory and designing evaluation of Stone Mastic Asphalt No. 206. 2000.
Lin, P. S., Wu, T. L., Chang, C. W. and Chou, B. Y. 2011. “Effects of recycling agents on aged asphalt binders and reclaimed asphalt concrete”. Mater. Struct., 44: 911-921. https://doi.org/10.1617/s11527-010-9675-8
Mangiafico, S., Di Benedetto, H., Sauzéat, C., Olard, F., Pouget, S. and Planque, L. 2016. “Relations between linear viscoelastic behaviour of bituminous mixtures containing reclaimed asphalt pavement and colloidal structure of corresponding binder blends”. Proc. Eng., 143: 138-145. https://doi.org/10.1016/j.proeng.2016. 06.018
Nasir, H., Kaur, M. and Faheem, S. 2024. “A statistical review on the usage of reclaimed asphalt pavement waste as a recyclable material”. IOP Conference Series: Earth Environ. Sci., 1327(1): 12021.
Noferini, L. 2017. “Investigation on performances of asphalt mixtures made with reclaimed asphalt pavement: Effects of interaction between virgin and RAP bitumen”. Int. J. Pavement Res. Technol., 10(4). https://doi.org/10.1016/j.ijprt.2017.03.011
Potti, J. J. 2020. “Asphalt in figures 2020”. EAPA.
Pradhan, S. K., Das, U. and Patra, A. R. 2023. “Utilization of reclaimed asphalt pavement (RAP) materials in HMA mixtures for flexible pavement construction”. Mater. Proc. https://doi.org/10.1016/j.matpr.2023.04 .464
Raj, N. K. K. and Ramesh, A. 2024. “Development of sustainable pavement: An experimental study of stone mastic asphalt prepared with warm mix additives and reclaimed asphalt pavement”. IOP Conference Series: Earth Environ. Sci., 1326(1): 012082.
Ramiączek, P., Cielibała, M., Skrzyniarz, N., Janus, K., Maciejewski, K., Iwański, M. M. and Chomicz-Kowalska, A. 2023. “Influence of the type of recycled asphalt pavement on the properties of the SMA JENA 16 stone mastic asphalt mixture”. Roads Bridges-Drogi i Mosty, 22(4): 569-578.
Roja, K. L., Masad, E. and Mogawer, W. 2021. “Performance and blending evaluation of asphalt mixtures containing reclaimed asphalt pavement”. Road Mater. Pavement Design, 22(11): 2441-2457.
Sivilevičius, H. and Martišius, M. 2023. “The significance of the factors increasing the asphalt pavement recycling rate in the country, determined using multiple-criteria decision-making methods”. Appl. Sci., 13(22): 12226.
Soleimani Golsefidi, S. and Sahaf, S. A. 2022. “Effect of reclaimed asphalt pavement (RAP) on fracture properties of stone matrix asphalt (SMA) at low temperature”. Constr. Build. Mater., 352: 128899. https://doi.org/10.1016/j.conbuildmat.2022.128899
Song, W., Huang, B. and Shu, X. 2018. “Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement”. J. Clean. Prod., 192: 191-198. https://doi.org/10.1016/j.jclepro.2018.04.269
Song, W., Xu, Z., Xu, F., Wu, H. and Yin, J. 2021. “Fracture investigation of asphalt mixtures containing reclaimed asphalt pavement using an equivalent energy approach”. Eng. Fract. Mech., 253: 107892. https://doi.org/10.1016/j.engfracmech.2021.107892
Varuna, M., Bhavani Prasad, G., Anjaneyappa, V. and Amarnath, M. S. 2022. “Influence of RAP and waste plastic on cracking resistance of warm SMA mixes”. Civ. Eng. Archit., 10(1).
West, R. C. and Copeland, A. 2015. “High RAP Asphalt Pavements: Japan practice: Lesson learned”.
Willis, J. R., Marasteanu, M. O. and West, R. C. 2013. “Improved mix design, evaluation, and materials management practices for hot mix asphalt with high reclaimed asphalt pavement content”. NCHRP.
Zali, N. S. S. M., Masri, K. A., Jaya, R. P., Abdullah, M. M. A. B., Hasan, M., Hasan, M. R. M., Jez, B., Nabiałek, M., Sroka, M. and Pietrusiewicz, P. 2022. “Properties of stone mastic asphalt incorporating nano titanium as binder’s modifier”. Arch. Civ. Eng., 68(1): 653-666. https://doi.org/10.24425/ace.2022.140192
Zangooeinia, P., Moazami, D., Bilondi, M. P. and Zaresefat, M. 2023. “Improvement of pavement engineering properties with calcium carbide residue (CCR) as filler in stone mastic asphalt. Results Eng., 20: 101501.
Zaumanis, M., Cavalli, M. C. and Poulikakos, L. D. 2020. “Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder”. Int. J. Pavement Eng., 21(4): 507-515. https://doi.org/10.1080/10298436.2018.1492133
Zhang, J., Zheng, M., Pei, J., Zhang, J. and Li, R. 2020. “Research on low temperature performance of emulsified asphalt cold recycled mixture and improvement measures based on fracture energy”. Mater., 13(14): 3176.
Zhong, H., Huang, W., Yan, C., Zhang, Y., Lv, Q., Sun, L. and Liu, L. 2021. “Investigating binder aging during hot in-place recycling (HIR) of asphalt pavement”. Constr. Build. Mater., 276: 122188. https://doi.org/10.1016/j.conbuildmat.2020.122188