بهینه‏سازی طرح اختلاط بتن سیمانی حاوی درصدهای مختلفی از مواد بازیافتی و ضایعاتی گرانول لاستیک تایر و تراشه آسفالت بازیافتی (رپ)

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

بتن یکی از مواد بسیار متداول جهت ساخت سازه‌های عمرانی می‌باشد و در سرتاسر جهان هر ساله مقادیر زیادی از این ماده مورد استفاده قرار می‌گیرد. استفاده از مواد بازیافتی و ضایعاتی در طرح اختلاط مخلوط بتن‏ها یکی از روش‏های مناسب و اقتصادی جهت تولید بتن‏های سبز و با صرفه اقتصادی می‌باشد که می‌تواند مشکلات زیست‏محیطی مربوط به امحا و انبارش ضایعات صنعتی را نیز کاهش دهد. گرانول لاستیک تایرهای بازیافتی و نیز تراشه‌های آسفالت بازیافتی و ضایعاتی است که در حجم‌های زیاد قابل تولید است و جایگزینی این دو ماده با سنگدانه‌های طبیعی می‌تواند به تولید بتن‏های سیمانی سبز و ارزان قیمت کمک نماید. با این وجود لازم است که بتن ساخته شده با این مواد بازیافتی به لحاظ استحکام و خواص مکانیکی نیز عملکرد مناسب داشته باشد. یکی از شاخص‌های تعیین کننده عملکرد دوام و عمر سازه‌های بتنی میزان مقاومت در برابر ترک­خوردگی مخلوط بتنی می‌باشد که با پارامتری به نام چقرمگی شکست اندازه‌گیری و سنجیده می‌شود. در این مقاله، به بررسی رفتار رشد ترک مخلوط‌های بتن سیمانی مختلف حاوی درصدهای مختلفی از گرانول لاستیک و RAP (رپ) در طرح اختلاط آنها پرداخته می‌شود. بدین منظور، با استفاده از روش طراحی آزمایش تاگوچی، محدوده افزودنی گرانول از صفر درصد حجمی تا ۹ درصد حجمی و محدوده افزودنی رپ از صفر درصد تا ۴۰ درصد حجمی تغییر داده شده و ۱۶ ترکیب مختلف از بتن حاوی درصدهای مختلف سنگدانه گرانول و رپ مورد ارزیابی قرار گرفت. تست‌های چقرمگی شکست با استفاده از نمونه دیسک ترک‌دار خمشی روی مخلوط‌های مختلف بتنی انجام شد. نتایج تست‌ها نشان­دهنده تأثیر قابل ملاحظه نوع و درصد افزودنی­ها بر میزان مقاومت ترک­خوردگی بتن‏های سیمانی است. برای بررسی اثرگذاری رپ و گرانول بر مقدار شاخص چقرمگی شکست از آزمون‏های آماری استفاده شد. در ابتدا از آنالیز واریانس (ANOVA) جهت بررسی تأثیرگذاری عامل استفاده شد و سپس این تأثیرگذاری با استفاده از نمودار پارتو نشان داده شد. بر اساس تحلیل­های آماری، هر دو افزودنی تأثیر معنادار و قابل توجهی بر رفتار شکست بتن‏های سیمانی دارند؛ اما تأثیر افزودنی رپ از افزودنی گرانول لاستیک تایر بیشتر است. همچنین، بر اساس بهینه‏سازی انجام شده، طرح اختلاط حاوی 30 درصد رپ، 70 درصد سنگدانه آهکی و صفر درصد گرانول لاستیک، بیشترین مقدار چقرمگی شکست بتن را به‏دست می‏دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Cementitious Concrete Mix Design Containing Various Percentages of Recycled Tire Rubber Granules and Reclaimed Asphalt Pavement (RAP)

نویسنده [English]

  • Din Mohammad Imani
Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Concrete is one of the most widely used Mater. in civil engineering Struct., with large quantities being utilized globally each year. Incorporating recycled and waste Mater. into concrete mixtures is an effective and economical approach for producing green and cost-efficient concrete while also addressing environmental concerns related to industrial waste disposal and storage. Recycled tire rubber granules and reclaimed asphalt pavement (RAP) are two waste Mater. available in large quantities, and their substitution for natural aggregates can contribute to the development of eco-friendly and low-cost cementitious concrete. However, it is essential to ensure that concrete containing these recycled Mater. maintains adequate strength and mechanical properties. One of the key indicators of the durability and service life of concrete Struct. is their resistance to cracking, which is measured using the fracture toughness parameter. This study investigates the crack growth behavior of cementitious concrete mixtures incorporating different percentages of tire rubber granules and RAP in their mix designs. Using the Taguchi experimental design method, the rubber granule content was varied from 0% to 9% by volume, while the RAP content ranged from 0% to 40% by volume, resulting in 16 different concrete mixtures with varying proportions of rubber granules and RAP aggregates. Fracture toughness tests were conducted on pre-notched flexural disk specimens for different concrete mixtures. The results indicate a significant effect of the type and percentage of additives on the crack resistance of cementitious concrete. Statistical analyses were performed to assess the influence of RAP and rubber granules on the fracture toughness index. Initially, an analysis of variance (ANOVA) was conducted to evaluate the significance of the factors, followed by a Pareto chart to illustrate their effects. The statistical analysis revealed that both additives had a significant impact on the fracture behavior of cementitious concrete, with RAP having a greater effect than tire rubber granules. Additionally, based on the optimization results, the optimal mix design consisting of 30% RAP, 70% limestone aggregate, and 0% tire rubber granules exhibited the highest fracture toughness.

کلیدواژه‌ها [English]

  • Cementitious concrete
  • Recycled additives
  • RAP
  • Tire rubber granules
  • Crack resistance index
  • Experimental design
  • Optimal mix design
  • Statistical methods
Abbas-Abadi, M. S., Kusenberg, M., Shirazi, H. M., Goshayeshi, B. and Van Geem, K. M. 2022. “Towards full recyclability of end-of-life tires: Challenges and opportunities”. J. Clean. Prod., 374: 134036. https://doi.org/10.1016/j.jclepro.2022.134036   
Aliha, M. R. M., Sarbijan, M. J. and Bahmani, A. 2017. “Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations”. Constr. Build. Mater., 155: 789-799. https://doi.org/10.1016/j.conbuildmat.2017.08.093  
Aliha, M. R. M., Razmi, A. and Mousavi, A. 2018. “Fracture study of concrete composites with synthetic fibers additive under modes I and III using ENDB specimen”. Constr. Build. Mater., 190: 612-622. https://doi.org/10.1016/j.conbuildmat.2018.09.092
Aliha, M. R. M., Kouchaki, H. G., Mohammadi, M. H., Haghighatpour, P. J., Choupani, N., Asadi, P. and Sadowski, T. 2024. “Fracture toughness determination for epoxy-based polymer concrete mixtures: Applicability of different rectangular beam and circular disc specimens”. Compos. Part C: Open Access, 14: 100446. https://doi.org/10.1016/j.jcomc.2024.100446  
Asdollah-Tabar, M., Heidari-Rarani, M. and Aliha, M. R. M. 2021. “The effect of recycled PET bottles on the fracture toughness of polymer concrete”. Compos. Commun., 25: 100684. https://doi.org/10.1016/j.coco. 2021.100684  
Ayar, P., Baradaran, S. and Abdipour Vosta, S. 2022. “A review on the effect of various additives on mechanical properties of stone mastic asphalt (SMA)”. Road, 30(110): 57-86.
Bahmani, A., Aliha, M. R. M., Sarbijan, M. J. and Mousavi, S. S. 2020. “An extended edge-notched disc bend (ENDB) specimen for mixed-mode I+II fracture assessments”. Int. J. Solids Struct., 193: 239-250. https://doi.org/10.1016/j.ijsolstr.2020.02.015  
Bakhshizadeh, M., Pirmohammad, S., Karimi, H. R. and Aliha, M. R. M. 2024. “Effect of support friction on pure mode I, II, and III fracture toughness of cement concrete tested with edge-notched disc bend specimen”. Theor. Appl. Fract. Mech., 129: 104247. https://doi.org/10.1016/j.tafmec.2023.104247  
Baradaran, S. and Ameri, M. 2023. “Investigation of rutting failure in asphalt mixtures and its improvement strategies”. Road, 31(114): 53-70.
Baradaran, S. and Aliha, M. R. M. 2025. “Mode I and Mode II fracture assessment of green asphalt pavements containing plastic waste and RAP at low and intermediate temperature”. Results Eng., 25: 103734. https://doi.org/10.1016/j.rineng.2024.103734   
Baradaran, S. and Ziaee, S. A. 2025. “Review of the mechanical properties of asphalt pavement reinforced with natural plant fibers as an eco-friendly solution in pavement engineering”. Road. Accepted.
Baradaran, M. S., Qazanfari, R. and Baradaran, S. 2023. “Study of soil reinforcement in the east of Mashhad using glass granule”. Mater. Res. Exp., 10(5): 055202. https://doi.org/10.1088/2053-1591/acd5af  
Baradaran, S., Aliha, M. R. M., Maleki, A. and Underwood, B. S. 2024a. “Fracture properties of asphalt mixtures containing high content of reclaimed asphalt pavement (RAP) and eco-friendly PET additive at low temperature”. Constr. Build. Mater., 449: 138426. https://doi.org/10.1016/j.conbuildmat.2024.13 8426  
Baradaran, S., Rahimi, J., Ameri, M. and Maleki, A. 2024b. “Mechanical performance of asphalt mixture containing eco-friendly additive by recycling PET”. Case Stud. Constr. Mater., 20: e02740. https://doi.org/10.1016/j.cscm.2023.e02740
Bazoobandi, P., Mousavi, S. R., Karimi, F., Karimi, H. R., Ghasri, M. and Aliha, M. R. M. 2024. “Cracking resistance of crumb rubber modified green asphalt mixtures, using calcium carbonate nanoparticles and two by-product wax-based warm mix additives”. Constr. Build. Mater., 424, 135848. https://doi.org/1 0.1016/j.conbuildmat.2024.135848  
Bhuva, P. and Bhogayata, A. 2022. “A review on the application of artificial intelligence in the mix design optimization and development of self-compacting concrete”. Mater. Today: Proceed., 65: 603-608. https://doi.org/10.1016/j.matpr.2022.03.248   
Bidadi, J., Akbardoost, J. and Aliha, M. R. M. 2020. “Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens”. Fatig. Fract. Eng. Mater. Struct., 43(2): 277-291. https://doi.org/10.1111/ffe.13124  
Chen, L., Chen, Z., Xie, Z., Wei, L., Hua, J., Huang, L. and Yap, P. S. 2023. “Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities”. Develop. Built Environ., 16: 100255. https://doi.org/10.1016/j.dibe.2023.100255   
Cywinski, Z. 2001. “Current philosophy of sustainability in civil engineering”. J. Prof. Issues Eng. Educ. Practice, 127(1): 12-16. https://doi.org/10.1061/(ASCE)1052-3928(2001)127%3A1(12)
Dao, D. V., Nguyen, N. L., Ly, H. B., Pham, B. T. and Le, T. T. 2020. “Cost-effective approaches based on machine learning to predict dynamic modulus of warm mix asphalt with high reclaimed asphalt pavement”. Mater., 13(15): 3272. https://doi.org/10.3390/ma13153272  
Debbarma, S., Selvam, M. and Singh, S. 2020. “Can flexible pavements’ waste (RAP) be utilized in cement concrete pavements? A critical review”. Constr. Build. Mater., 259: 120417. https://doi.org/10.1016/j.co nbuildmat.2020.120417  
Deepa, C., SathiyaKumari, K. and Sudha, V. P. 2010. “Prediction of the compressive strength of high-performance concrete mix using tree-based modeling”. Int. J. Comput. Appl., 6(5): 18-24. https://doi.org/10.5120/1083-1415  
Delwar, M., Fahmy, M. and Taha, R. 1997. “Use of reclaimed asphalt pavement as an aggregate in Portland cement concrete”. Mater. J., 94(3): 251-256.
Ding, Y., Yang, Y., Liu, R., Xiao, T. and Tian, J. 2019. “Study on pressure sensitivity of smart polymer concrete based on steel slag”. Measurement, 140: 14-21. https://doi.org/10.1016/j.measurement.2019.03.0 58  
Erarslan, N. 2019. “Analysing mixed mode (I–II) fracturing of concrete discs including chevron and straight-through notch cracks”. Int. J. Solids Struct., 167: 79-92. https://doi.org/10.1016/j.ijsolstr.2019.03.005
Erarslan, N. 2023. “Investigation of the tensile-shear failure of asphalt concrete base (ACB) construction materials using a non-linear cohesive crack model and critical crack threshold analysis. Constr. Build. Mater., 364: 129901. https://doi.org/10.1016/j.conbuildmat.2022.129901
Erarslan, N. and Williams, D. J. 2012. “The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks”. Int. J. Rock Mech”. Mining Sci., 56: 15-26. https://doi.org/10.1016/j.ijrmm s.2012.07.015
Erarslan, N. and Aliha, M. R. M. 2025. “Fracture and damage analysis of cement-stabilized fine and coarse grain soils under static and cyclic loading using chevron-notched SCB specimen. Fatig. Fract. Eng. Mater. Struct. https://doi.org/10.1111/ffe.14598
Erarslan, N., Obligado, R., Li, Z. and Ghamgosar, M. 2015. “Experimental and numerical investitaions on mixed mode fracturing of concrete and rocks by using semi-circular disc (SCD) and disc specimens”. In: ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2015). ARMA.
Fakhri, M., Amoosoltani, E. and Aliha, M. R. M. 2017. “Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber”. Eng. Fract. Mech., 180: 43-59. https://doi.org/10.1016/j.engfracmech.2017.05.011   
Gencel, O., Erdugmus, E., Sutcu, M. and Oren, O. H. 2020. “Effects of concrete waste on characteristics of structural fired clay bricks”. Constr. Build. Mater., 255: 119362. https://doi.org/10.1016/j.conbuildmat.202 0.119362    
Golewski, G. L. 2019. “Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method”. Measurement, 135: 96-105. https://doi.org/10.1016/j.m easurement.2018.11.039  
Golewski, G. L. 2021. “Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method”. Measurement, 181: 109632. https://doi.org/10.1016/j.measurement.2021.109632  
Gou, Y., Zhang, L., Liu, C., Zhang, H., Wei, C. and Cai, X. B. 2021. “Investigation of freeze-thaw mechanism for crumb rubber concrete by the online strain sensor”. Measurement, 174: 109080. https://doi.org/10.1016/ j.measurement.2021.109080  
Gravina, R. J., Xie, T., Giustozzi, F., Zhao, X. and Visintin, P. 2021. “Assessment of the variability and uncertainty of using post-customer plastics as natural aggregate replacement in concrete”. Constr. Build. Mater., 273: 121747. https://doi.org/10.1016/j.conbuildmat.2020.121747  
Gupta, T., Patel, K. A., Siddique, S., Sharma, R. K. and Chaudhary, S. 2019. “Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN”. Measurement, 147: 106870. https://doi.org/10.1016/j.measurement.2019.106870  
Haghighatpour, P. J. and Aliha, M. R. M. 2023. “The influence of recycled asphalt pavement materials on low and intermediate fracture behavior of asphalt concrete (AC) after exposing to different thawing and freezing periods”. Eng. Fract. Mech., 293: 109715. https://doi.org/10.1016/j.engfracmech.2023.109715  
Hanein, T., Hayashi, Y., Utton, C., Nyberg, M., Martinez, J. C. and Quintero-Mora, N. I. 2020. “Pyro processing cement kiln bypass dust: Enhancing clinker phase formation”. Constr. Build. Mater., 259: 120420. https://doi.org/10.1016/j.conbuildmat.2020.120420  
He, J., Liu, L., Yang, H. and Aliha, M. R. M. 2022. “Using two and three-parameter Weibull statistical model for predicting the loading rate effect on low-temperature fracture toughness of asphalt concrete with the ENDB specimen”. Theor. Appl. Fract. Mech., 121: 103471. https://doi.org/10.1016/j.tafmec.2022.103471   
Huang, Y., Zhang, J., Ann, F. T. and Ma, G. 2020. “Intelligent mixture design of steel fibre reinforced concrete using a support vector regression and firefly algorithm based multi-objective optimization model”. Constr. Build. Mater., 260: 120457. https://doi.org/10.1016/j.conbuildmat.2020.120457  
Issa, C. A. and Salem, G. 2013. “Utilization of recycled crumb rubber as fine aggregates in concrete mix design”. Constr. Build. Mater., 42: 48-52. https://doi.org/10.1016/j.conbuildmat.2012.12.054  
Karamzadeh, N. S., Aliha, M. R. M. and Karimi, H. R. 2022. “Investigation of the effect of components on tensile strength and mode-I fracture toughness of polymer concrete”. Arab. J. Geosci., 15(13): 1213. https://doi.org/10.1007/s12517-022-10450-8  
Karimi, H. R., Ebneabbasi, P., Shahni Karamzadeh, N. and Khedri, E. 2022. “Effect of water to cement (W/C) ratio and age on mechanical behavior of tire-recycled steel fiber reinforced concrete”. Struct. Concrete, 24(2): 2460-2474. https://doi.org/10.1002/suco.202200007   
Khan, E. U., Khushnood, R. A. and Baloch, W. L. 2020. “Spalling sensitivity and mechanical response of an ecofriendly sawdust high strength concrete at elevated temperatures”. Constr. Build. Mater., 258: 119656. https://doi.org/10.1016/j.conbuildmat.2020.119656  
Khater, H. M. 2019. “Hybrid slag geopolymer composites with durable characteristics activated by cement kiln dust”. Constr. Build. Mater., 228: 116708. https://doi.org/10.1016/j.conbuildmat.2019.116708  
Majidifard, H., Jahangiri, B., Buttlar, W. G. and Alavi, A. H. 2019. “New machine learning-based prediction models for fracture energy of asphalt mixtures”. Measurement, 135: 438-451. https://doi.org/10.1016/ j.measurement.2018.11.081  
Mo, J., Zeng, L., Liu, Y., Ma, L., Liu, C. and Xiang, S. 2020. “Mechanical properties and damping capacity of polypropylene fiber reinforced concrete modified by rubber powder”. Constr. Build. Mater., 242: 118111. https://doi.org/10.1016/j.conbuildmat.2020.118111  
Moradi, M. J., Khaleghi, M., Salimi, J., Farhangi, V. and Ramezanianpour, A. M. 2021. “Predicting the compressive strength of concrete containing metakaolin with different properties using ANN”. Measurement, 183: 109790. https://doi.org/10.1016/j.measurement.2021.109790  
Motamedi, H., Fazaeli, H., Aliha, M. R. M. and Amiri, H. R. 2020. “Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen”. Constr. Build. Mater., 234: 117365. https://doi.org/10.1016/j.conbuildmat.2019.117365  
Motlagh, S. A. T. and Naghizadehrokni, M. 2022. “An extended multi-model regression approach for compressive strength prediction and optimization of a concrete mixture”. Constr. Build. Mater., 327: 126828. https://doi.org/10.1016/j.conbuildmat.2022.126828  
Najjar, S., Moghaddam, A. M., Sahaf, A. and Aliha, M. R. M. 2020. “Low temperature fracture resistance of cement emulsified asphalt mortar under mixed mode I/III loading”. Theor. Appl. Fract. Mech., 110: 102800. https://doi.org/10.1016/j.tafmec.2020.102800  
Najjar, S., Moghaddam, A. M., Sahaf, A. and Aliha, M. R. M. 2022a. “Aging effect on the mixed-mode (I/III) fracture toughness of cement emulsified asphalt composite: Experimental and statistical investigation”. Eng. Fract. Mech., 264: 108292. https://doi.org/10.1016/j.engfracmech.2022.108292  
Najjar, S., Moghaddam, A. M., Sahaf, A. and Aliha, M. R. M. 2022b. “Experimental and statistical exploring for mixed-mode (I&II) fracture behavior of cement emulsified asphalt mortar under freeze–thaw cycles and aging condition”. Theor. Appl. Fract. Mech., 122: 103643. https://doi.org/10.1016/j.tafmec.2022.103 643   
Nili, M., Ramezanianpour, A. A. and Sobhani, J. 2021. “Evaluation of the effects of silica fume and air-entrainment on deicer salt scaling resistance of concrete pavements: Microstructural study and modeling”. Constr. Build. Mater., 308: 124972. https://doi.org/10.1016/j.conbuildmat.2021.124972
Rahal, K. N. and Hassan, W. 2021. “Shear strength of plain concrete made of recycled low-strength concrete aggregates and natural aggregates”. Constr. Build. Mater., 311: 125317. https://doi.org/10.1016/j.conbuil dmat.2021.125317  
Rajaee, A., Davarpanah, Amirhosein, Pournoori, P. and Yousefi, M. 2023. “Influence of different types of fiber on fracture strength of asphalt mixtures using SCB specimens”. In: 5th International Congress on Civil, Architecture and Urbanism in Asia, Bangkok, Thailand.
Rajaee, A., Talebi, N. and Abrishami, S. 2025. “The impacts of freeze-thaw cycles on polypropylene fiber-reinforced clayey soil stabilized with alkali-activated fly ash”. Case Stud. Constr. Mater., 22: e04439 https://doi.org/10.1016/j.cscm.2025.e04439
Richardson, A. E., Coventry, K. A. and Ward, G. 2012. “Freeze/thaw protection of concrete with optimum rubber crumb content”. J. Clean. Prod., 23(1): 96-103. https://doi.org/10.1016/j.jclepro.2011.10.013  
Ruengsillapanun, K., Udtaranakron, T., Pulngern, T., Tangchirapat, W. and Jaturapitakkul, C. 2021. “Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete”. Constr. Build. Mater., 299: 123954. https://doi.org/10.1016/j.conbuildmat.2021.123954  
Sahan, M. F. and Unsal, I. 2023. “An experimental analysis for impact behavior of Portland cement concrete substituted with reclaimed asphalt pavement aggregate”. Iran. J. Sci. Tech., Trans. Civ. Eng., 47(4): 2113-2130. https://doi.org/10.1007/s40996-023-01053-5  
Saloni, A., Parveen, J., Lim, Y. Y. and Pham, T. M. 2021. “Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties”. Constr. Build. Mater., 300: 124321. https://doi.org/10.1016/j.conbuildmat.2021.124321  
Serelis, E., Vaitkevicius, V., Hilbig, H., Irbe, L. and Rudzionis, Z. 2021. “Effect of ultra-sonic dispersion time on hydration process and microstructure development of ultra-high performance glass powder concrete”. Constr. Build. Mater., 298: 123856. https://doi.org/10.1016/j.conbuildmat.2021.123856  
Sharifi, E., Sadjadi, S. J., Aliha, M. R. M. and Moniri, A. 2020. “Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method”. Constr. Build. Mater., 236: 117547. https://doi.org/10.1016/j.conbuildmat.2019.117547   
Shojamoghadam, S., Rajaee, A. and Abrishami, S. 2024. “Impact of various additives and their combinations on the consolidation characteristics of clayey soil”. Sci. Reports, 14(1): 31907. https://doi.org/10.1038/s41 598-024-31907-2  
Skarżyński, Ł. and Tejchman, J. 2021. “Investigations on fracture in reinforced concrete beams in 3-point bending using continuous micro-CT scanning”. Constr. Build. Mater., 284: 122796. https://doi.org/10.101 6/j.conbuildmat.2021.122796  
Suebsuk, J., Horpibulsuk, S., Phunpeng, V., Panpipat, P., Chaidachatorn, K., Kroehong, W. and Somna, R. 2024. “Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete”. Constr. Build. Mater., 455: 139180. https://doi.org/10.1016/j.conbuildmat.2024.139180  
Sumarac, D., Sekulovic, M. and Krajcinovic, D. 2003. “Fracture of reinforced concrete beams subjected to three-point bending”. Int. J. Damage Mech., 12(1): 31-44. https://doi.org/10.1177/1056789503012001002  
Sun, X., Gao, Z., Cao, P., Zhou, C., Ling, Y., Wang, X. and Diao, M. 2019. “Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam”. Constr. Build. Mater., 225: 788-800. https://doi.org/10.1016/j.conbuildmat.2019.07.135  
Suri, R. S., Dubey, V., Kapoor, N. R., Kumar, A. and Bhushan, M. 2021. “Optimizing the compressive strength of concrete with altered compositions using hybrid PSO-ANN”. In International Conference on Information Systems and Management Science (pp. 163-173. Springer Int. Publishing. https://doi.org/1 0.1007/978-3-030-86290-9_13   
Tareghian, B., Baradaran, M. S. and Akhtarpour, A. 2024. “The effect of sand-crumb rubber mixture treatment on the seismic response of a low-rise building located on liquefiable soil”. Discover Geosci., 2(1): 11. https://doi.org/10.1007/s44188-024-00011-8  
Thomas, B. S. and Chandra Gupta, R. 2016. “Properties of high strength concrete containing scrap tire rubber”. J. Clean. Prod., 113: 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019  
Yazdi, A. N., Akhtarpour, A., Abdalhusein, M. M. and Baradaran, M. S. 2024. “Experimental investigation of the volume change of a swelling clay and its improvement”. Transport. Infrastruct. Geotech., 11(3): 1008-1031. https://doi.org/10.1007/s40515-023-00291-6  
Yoo, D. Y. and Banthia, N. 2016. “Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review”. Cement Concrete Compos., 73: 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001   
Záleská, M., Pavlíková, M., Pokorný, J., Jankovský, O., Pavlík, Z. and Černý, R. 2018. “Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics”. Constr. Build. Mater., 180: 1-11. https://doi.org/10.1016/j.conbuildmat.2018.05.250  
Zhang, M., Cheng, W. and Wang, Y. 2018. “Multiple-fault classification for hot-mix asphalt production by machine learning”. J. Constr. Eng. Manag., 144(5): 04018024. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001478  
Zhang, S., Cao, K., Wang, C., Wang, X., Wang, J. and Sun, B. 2020. “Effect of silica fume and waste marble powder on the mechanical and durability properties of cellular concrete”. Constr. Build. Mater., 241: 117980. https://doi.org/10.1016/j.conbuildmat.2019.117980  
Zuo, S. and Liu, B. 2025. “Optimization design of concrete mix proportion based on support vector machine regression and enhanced genetic algorithm”. Discover Appl. Sci., 7(3): 200. https://doi.org/10.1007/s4245 2-025-06012-8