بررسی اثر گرمایش ماکروویو بر خودترمیمی مخلوط های آسفالتی حاوی الیاف رسانا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه راه و ترابری، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل

2 دانشجوی کارشناسی ارشد راه و ترابری، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل

چکیده

 
بتن آسفالتی یک ماده خودترمیم است و هنگامی که در معرض دوره­های استراحت قرار می­گیرد، قادر است به‏صورت خودکار خرابی­ها را ترمیم نماید. ترمیم بتن آسفالتی، بهبود مقاومت و سفتی آن، به­دلیل بسته شدن ترک­های داخلی، می­باشد. با این حال، میزان ترمیم در دمای محیط، به­ویژه در دمای کم، آهسته است و نمی­توان جریان ترافیک روی جاده را برای رسیدن به ترمیم کافی مسدود نمود. علاوه بر این، خودترمیمی بتن آسفالتی به‏طور قابل توجهی به دما وابسته است و هنگامی که روسازی در معرض دمای بیشتر قرار گیرد، میزان ترمیم افزایش می­یابد. در این تحقیق، به منظور افزایش ظرفیت خودترمیمی بتن آسفالتی از طریق افزایش دما، فرایند گرمایش ماکروویو استفاده شد. به منظور افزایش بازدهی گرمایش توسط ماکروویو، مقادیر مختلف فیبر کربن و الیاف آهن به مخلوط آسفالتی اضافه شد. طبق نتایج آزمایش تعیین نوع و درصد الیاف بهینه، مشخص گردید که نمونه­های حاوی فیبر کربن بازدهی بهتری نسبت به نمونه­های حاوی الیاف آهن دارند. همچنین، درصد بهینه فیبر کربن برابر 2/0 درصد وزن کل مخلوط آسفالتی به‏دست آمده است. علاوه بر این، به منظور بررسی فرایند خودترمیمی در مخلوط آسفالتی، نمونه­های ساخته شده تحت آزمایش تعیین عمر خستگی، آزمایش دوام کانتابرو و آزمایش مقاومت کششی غیر مستقیم قرار گرفتند. نتایج آزمایش‏ها نشان ­داد که اعمال گرمایش سبب افزایش میزان ترمیم عمر خستگی و مقاومت کششی می­گردد و نمونه­های تخریب شده می­توانند بخشی از خصوصیات از دست رفته خود را بازیابند. همچنین،، با افزایش دمای گرمایش، میزان ترمیم افزایش می­یابد. علاوه بر این، مشخص گردید که گرمایش نبایستی خیلی دیر اعمال گردد. نتایج آزمایش دوام کانتابرو نشان می­دهد که چنانچه در بین دوران­ها گرمایش اعمال گردد، به‏دلیل افزایش چسبندگی میان قیر و سنگدانه، شاهد کاهش جدایی سنگدانه خواهیم بود.
 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Microwave Heating Effect on Self-healing of Asphalt Mixtures Containing Conductive Fibers

نویسندگان [English]

  • saeed hesami 1
  • ebrahim hesami 1
  • mohammad gholi pour goodarzi 2
چکیده [English]

Asphalt concrete is a self-healing material which can repair damages automatically when it is exposed to rest periods. Healing of an asphalt concrete is the recovery of its stiffness and strength due to closure of the internal cracks. Nevertheless, healing rate in ambient temperature, especially at low temperature, is slow and traffic circulation can't be closed during reaching sufficient healing. Furthermore, self-healing of asphalt concrete is much dependent on temperature and pavement healing will increase at high temperatures. In this research, microwave heating was used in order to increase asphalt concrete self-healing capacity through temperature increase. Varying amounts of carbon fiber and steel wool were added to the asphalt mixture to increase thermal efficiency by microwave heating. According to the results of type and optimum wool percent test, it was observed that samples with carbon fibers have better efficiency compared to other mixtures with steel wool. Also, optimum carbon fiber percent was obtained as 0.2% of mixture's total mass. Moreover, in order to investigate self-healing process in asphalt mixture, fatigue life test, Cantabro durability test and indirect tensile test were conducted on the samples. Test results showed that heating causes an increase in healing rate of fatigue life and tensile strength and failure samples can recover part of their lost properties. Also, healing rate increases with temperature rise, as well. Also, it was revealed that heating should not be applied very late. Cantabro durability test results showed if heating is applied between the rotations, aggregate separation will be reduced because of increasing cohesion between bitumen and aggregates.

کلیدواژه‌ها [English]

  • Self-healing
  • Microwave heating
  • Asphalt Mixture
  • Carbon fiber
  • Steel wool
معاونت برنامه­ریزی و نظارت راهبردی ریاست جمهوری. 1390. "آئین‏نامه روسازی راه­های آسفالتی ایران". نشریه شماره 234، وزارت راه و شهرسازی، پژوهشکده حمل و نقل، مؤسسه قیر و آسفالت ایران، تجدید نظر اول.

AASHTO T 321-07. 2011. “Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to Repeated Flexural Bending”. American Association of State Highway and Transportation Officials.

ASTM D6931–12. 2012. “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures”. American Society for Testing and Materials, May.

Ayar, P., Moreno-Navarro, F. and Rubio-Gámez, M. C. 2016. “The healing capability of asphalt pavements: A state of the art review”. J. Cleaner Prod., 113: 28-40.

Bazin, P. and Saunier, J. 1967. “Deformability, fatigue, and healing properties of asphalt mixes”. Proceedings of the Second International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, Michigan, pp. 553-569.

Bhasin, A., Little, D. N., Bommavaram, R. and Vasconcelos, K. L. 2008. “A framework to quantify the effect of healing in bituminous materials using material properties”. Int. J. Road Mater. Pavement Des. 8: 219-242.

Castro, M. and Sánchez, J. A. 2006. “Fatigue and healing of asphalt mixtures: Discriminate analysis of fatigue curves”. J. Transport. Eng., 132(2): 168-174.

Dai, Q., Wang, Z. and Hasan, M. R. M. 2013. “Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests”. Constr. Build. Mater., 49: 729-737.

Doyle, J. D. and Howard, I. L. 2011. “Evaluation of the cantabro durability test for dense graded asphalt”. Proc. Geo-Frontiers Congress.

Francken, L. 1979. “Fatigue performance of a bituminous road mix under realistic best conditions”. Transport Res. Record, 712: 30-37.

Gallego, J., del Val, M. A., Contreras, V. and Páez, A. 2013. “Heating asphalt mixtures with microwaves to promote self-healing”. Constr. Build. Mater., 42: 1-4.

 García, A., Bueno, M., Norambuena-Contreras, J. and Partl, M. N. 2013. “Induction healing of dense asphalt concrete”. Constr. Build. Mater., 49: 1-7.

García, Á., Schlangen, E., van de Ven, M. and van Bochove, G. 2012. “Optimization of composition and mixing process of a self-healing porous asphalt”. Constr. Build. Mater., 30: 59-65.

García, Á., Schlangen, E., van de Ven, M. and van Vliet, D. 2011. “Induction heating of mastic containing conductive fibers and fillers”. Mater. Struc., 44(2): 499-508.

Howard, I. L. and Doyle, J. D. 2014. “Characterization of dense-graded asphalt with the Cantabro Test”. J. Test. Eval., 44(1): 77-88.

Kim, T., Lee, J. and Lee, K. H. 2014. “Microwave heating of carbon-based solid materials”. Carbon Lett., 15(1): 15-24.

Kringos, N., Schmets, A., Pauli, T. and Scarpas, T. 2009. “A finite element base chemomechanical model to similate healing in bitumen”. Chemo-mechanics of Bituminous Materials, Group of the Mechanics of Infrastructure Materials.

Little, D. N. and Bhasin, A. 2007. “Exploring mechanisms of healing in asphalt mixtures and quantifying its impact. Self Healing Materials an Alternative Approach to 20 Centuries of Materials Science, Springer Series in Materials Science, 100: 205-218.

Liu, Q., García, Á., Schlangen, E. and van de Ven, M. 2011. “Induction healing of asphalt mastic and porous asphalt concrete”. Constr. Build. Mater., 25(9): 3746-3752.

Liu, Q., Schlangen, E., García, Á. and van de Ven, M. 2010. “Induction heating of electrically conductive porous asphalt concrete”. Constr. Build. Mater., 24(7): 1207-1213.

Liu, Q., Schlangen, E., van de Ven, M., van Bochove, G. and van Montfort, J. 2012. “Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test”. Constr. Build. Mater., 29: 403-409.

Liu, Q., Wu, S. and Schlangen, E. 2013. “Induction heating of asphalt mastic for crack control”. Constr. Build. Mater., 41: 345-351.

Liu, Q., Yu, W., Schlangen, E. and van Bochove, G. 2014. “Unravelling porous asphalt concrete with induction heating”. Constr. Build. Mater., 71: 152-157.

Phillips, M. C. 1998. “Multi-step Models for Fatigue and Healing, and Binder Properties Involved in Healing”. Proceedings, Eurobitume Workshop on Performance Related Properties for Bituminous Binders, Luxembourg, Paper No. 115.

Qiu, J., Molenaar, A. A. A., Van de Ven, M. F. C., Wu, S. and Yu, J. 2012. “Investigation of self healing behaviour of asphalt mixes using beam on elastic foundation setup”. Mater. Struc., 45(5): 777-791.

Shell Bitumen. 1995. “The shell Bitumen Industrial Handbook”. Surrey, U.K.

Van Dijk, W., Moreaud, H., Quedeville, A. and Uge, P. 1972. “The Fatigue of Bitumen and Bituminous Mixes”. Proceedings of the 3rd International Conference on the Structure Design of Pavement, London, pp. 354-366.

White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N. and Viswanathan, S. 2001. “Autonomic healing of polymer composites”. Nature, 409: 794-797.

Williams, D., Little, D. N., Lytton, R. L., Kim, Y. R. and Kim, Y. 2001. “Microdamage healing in asphalt and asphalt concrete”. Volume II: Laboratory and Field Testing to Assess and Evaluate Microdamage and Microdamage Healing. Federal Highway Administration, Publication No. FHWA-RD-98-142.

Williams, D., Little, D. N., Lytton, R. L., Kim, Y. R. and Kim, Y. 2001. “Microdamage healing in asphalt and asphalt concrete”. Res. Rep. 7229, A&M University, College Station, Texas.

Wu, S., Mo, L., Shui, Z. and Chen, Z. 2005. “Investigation of the conductivity of asphalt concrete containing conductive fillers”. Carbon, 43(7): 1358-1363.

Yuan, Y. C., Yin, T., Rong, M. Z. and Zhang, M. Q. 2008. “Self healing in polymers and polymer composites, concepts, realization and outlook: A review”. Express Polym. Lett., 2: 238-250.

Zanko, L. M., Hopstock, D. M. and DeRocher, W. 2016. “Evaluate and Develop Innovative Pavement Repair and Patching: Taconite-Based Repair Options. Minnesota Department of Transportation.

معاونت برنامه ریزی و نظارت راهبردی ریاست جمهوری. 1390. "آئین نامه روسازی راه های آسفالتی ایران". نشریه شماره 234 ، وزارت راه و شهرسازی، پژوهشکده حمل و نقل، موسسه قیر و آسفالت ایران ، تجدید نظر اول

AASHTO T 321-07. “Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to Repeated Flexural Bending”, American Association of State Highway and Transportation Officials, (2011).

ASTM D6931 – 12 . “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures”, American Society for Testing and Materials, May (2012).

Ayar, P., Moreno-Navarro, F., & Rubio-Gámez, M. C. (2016). The healing capability of asphalt pavements: a state of the art review. Journal of Cleaner Production, 113, 28-40.

Bazin P, Saunier J (1967). Deformability, fatigue, and healing properties of asphalt mixes. Proceedings of the Second International Conference on the Structural Design of Asphalt Pavements, Aan Arbor, Michigan, pp 553-569.

Bhasin A, Little DN, Bommavaram R, Vasconcelos KL (2008). A framework to quantify the effect of healing in bituminous materials using material properties. International Journal of Road Materials and Pavement Design 8:219–242.

Castro M, Sánchez JA (2006). Fatigue and healing of asphalt mixtures: discriminate analysis of fatigue curves. Journal of Transportation Engineering 132(2):168-174.

Dai, Q., Wang, Z., & Hasan, M. R. M. (2013). Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Construction and Building Materials, 49, 729-737.

Doyle, J. D., & Howard, I. L. (2011). Evaluation of the cantabro durability test for dense graded asphalt. In Geo-Frontiers Congress 2011.

Francken L (1979). Fatigue performance of a bituminous road mix under realistic best conditions. Transport Research Record 712:30-37.

Gallego, J., del Val, M. A., Contreras, V., & Páez, A. (2013). Heating asphalt mixtures with microwaves to promote self-healing. Construction and Building Materials, 42, 1-4.

 García, A., Bueno, M., Norambuena-Contreras, J., & Partl, M. N. (2013). Induction healing of dense asphalt concrete. Construction and Building Materials, 49, 1-7.

García, Á., Schlangen, E., van de Ven, M., & van Bochove, G. (2012). Optimization of composition and mixing process of a self-healing porous asphalt. Construction and Building Materials, 30, 59-65.

García, Á., Schlangen, E., van de Ven, M., & van Vliet, D. (2011). Induction heating of mastic containing conductive fibers and fillers. Materials and structures, 44(2), 499-508.

Howard, I. L., & Doyle, J. D. (2014). Characterization of Dense-Graded Asphalt With the Cantabro Test. Journal of Testing and Evaluation, 44(1), 77-88.

Kim, T., Lee, J., & Lee, K. H. (2014). Microwave heating of carbon-based solid materials. Carbon letters, 15(1), 15-24.

Kringos N, Schmets A, pauli T, Scarpas T (2009). A finite element base chemomechanical model to similate healing in bitumen. Chemo-mechanics of Bituminous materials, 2009 Group of the Mechanics of infrastructure materials, ISBN 7209653.

Little DN, Bhasin A (2007). Exploring mechanisms of healing in asphalt mixtures and quantifying its impact. Self Healing Materials an Alternative Approach to 20 Centuries of Materials Science, Springer Series in Materials Science 100: 205-218.

Liu, Q., García, Á., Schlangen, E., & van de Ven, M. (2011). Induction healing of asphalt mastic and porous asphalt concrete. Construction and Building Materials, 25(9), 3746-3752.

Liu, Q., Schlangen, E., García, Á., & van de Ven, M. (2010). Induction heating of electrically conductive porous asphalt concrete. Construction and Building Materials, 24(7), 1207-1213.

Liu, Q., Schlangen, E., van de Ven, M., van Bochove, G., & van Montfort, J. (2012). Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. Construction and Building Materials, 29, 403-409.

Liu, Q., Wu, S., & Schlangen, E. (2013). Induction heating of asphalt mastic for crack control. Construction and Building Materials, 41, 345-351.

Liu, Q., Yu, W., Schlangen, E., & van Bochove, G. (2014). Unravelling porous asphalt concrete with induction heating. Construction and Building Materials, 71, 152-157.

Phillips MC (1998). Multi-step models for fatigue and healing, and binder properties involved in healing. Proceedings, Eurobitume Workshop on Performance Related Properties for Bituminous Binders, Luxembourg, Paper No. 115.

Qiu, J., Molenaar, A. A. A., Van de Ven, M. F. C., Wu, S., & Yu, J. (2012). Investigation of self healing behaviour of asphalt mixes using beam on elastic foundation setup. Materials and structures, 45(5), 777-791.

Shell Bitumen (1995).The shell Bitumen Industrial Handbook, Surrey, U.K.

Van Dijk W, Moreaud H, Quedeville A, Uge P (1972). The fatigue of bitumen and bituminous mixes. Proceedings of the 3rd International Conference on the Structure Design of pavement, London, p. 354-366.

White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001). Autonomic healing of polymer composites. Nature 409: 794-797.

Williams D, Little DN, Lytton RL, Kim YR, Kim Y (2001). Microdamage healing in asphalt and asphalt concrete; Volume II: Laboratory and Field Testing to Assess and Evaluate Microdamage and Microdamage Healing. Federal Highway Administration, Publication No. FHWA-RD-98-142.

Williams D, Little DN, Lytton RL, Kim YR., Kim Y (2001). Microdamage healing in asphalt and asphalt concrete. Res. Rep. 7229, A&M University, College Station, Texas

Wu, S., Mo, L., Shui, Z., & Chen, Z. (2005). Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 43(7), 1358-1363.

Yuan YC, Yin T, Rong MZ, Zhang MQ. Self healing in polymers and polymer composites, concepts, realization and outlook: a review. Express Polym Letts 2008;2:238–50.

Zanko, L. M., Hopstock, D. M., & DeRocher, W. (2016). Evaluate and Develop Innovative Pavement Repair and Patching: Taconite-Based Repair Options.