تأثیر محلول SSR400 بر خواص مهندسی بستر روسازی‌های آسفالتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان،ایران

2 استادیار، دانشکده مهندسی عمران و حمل‌ونقل، دانشگاه اصفهان،اصفهان،ایران

3 دانش‌آموخته کارشناسی ارشد راه و ترابری، اصفهان،ایران

چکیده

در این مقاله، تأثیر یک نوع ماده تثبیت‌کننده، موسوم به "محلول SSR400" که از شورابه کویر مرکزی ایران حاصل شده و سرشار از محلول کلرید کلسیم و کلرید منیزیم می­باشد، بر بهبود مقاومتی و تورم خاک بستر ریزدانه (خاک‏های لای­دار و رس­دار) روسازی‌های آسفالتی مورد بررسی قرار گرفته است. برای این منظور، از خاک بستر چندین راه فرعی واقع در منطقه سیستان ایران نمونه­‌برداری شده و با انتخاب درصدهای مختلف (بین 5/12 تا 5/22 درصد) محلول SSR400، نمونه‌هایی از خاک به روش استاندارد تهیه شده و تحت آزمایش‌های درصد تراکم، درصد رطوبت، نسبت باربری کالیفرنیا (CBR)، مقاومت فشاری تک‌محوری (UC) و حدود آتربرگ (حد روانی و حد خمیری) قرار گرفتند. نتایج نشان داد که استفاده از محلول SSR400 به­عنوان یک ماده تثبیت­کننده، ظرفیت باربری خاک‏های لای­دار و رس­دار را افزایش داده، اما در کنترل میزان تورم از کارایی لازم برخوردار نمی­باشد. بعلاوه، مناسب‌ترین میزان اختلاط محلول یاد شده با خاک لای­دار 5/16 درصد و برای خاک رس­دار حدود 5/14 درصد می­باشد.  

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of SSR400 Solution on Engineering Properties of Subgrade in Asphalt Pavements

نویسندگان [English]

  • Mohammadhassan Mirabimoghaddam 1
  • Ahmad Goli 2
  • Farhad sharaki 3
1 Assistant Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Ira
2 Assistant Professor, Faculty of Civil Engineering and Transportation, University of Isfahan, Isfahan, Ira
3 Graduated MSc. of Transportation Planning, Isfahan, Ira
چکیده [English]

In this paper, effect of a stabilizing material known as "SSR400 solution", which is obtained from briny waters of Iran's central desert and is rich in calcium chloride and magnesium chloride, on improving the strength and swelling of fine-grained soil (containing silt and clay) in asphalt pavements is investigated. For this purpose, soil samples were taken from various secondary roads in Sistan region, Iran, and by selecting different amounts of SSR400 solution (12.5 to 22.5 percent), some test samples were prepared using standard methods, and they were tested for density, moisture content, California bearing ratio (CBR), unconfined compressive strength (UC), and Atterberg limits (liquid limit and plastic limit). Results showed that using SSR400 solution as a stabilizing material increases bearing capacity of silty and clayey soils, but is not effective in controlling the soil swelling. Moreover, the optimal amount of this solution for mixing with silty and clayey soils was 16.5 and 14.5 percent, respectively.

کلیدواژه‌ها [English]

  • SSR400 solution
  • Magnesium chloride
  • CBR test
  • Unconfined compressive strength
  • Asphalt Pavement
حسینی, ر.، رهنماراد، ج. و سلوکی، ح. ر. ۱۳۹۲. "بررسی تثبیت خاک با استفاده از آهک و محلول تجاری 033-tx برای اهداف راه­سازی، مطالعه موردی: منطقه شرق دشت سیستان". هفتمین کنگره ملی مهندسی عمران، دانشگاه سیستان و بلوچستان، زاهدان.
نیازی، ی. 1390. "مهندسی روسازی". انتشارات نما، چاپ اول. 
Bell, F. 1995. “Cement stabilization and clay soils, with examples”. Environ Eng. Geosci., 1(2): 139-151.
Cui, X., Zhang, N., Zhang, J. and Gao, Z. 2014. “In situ tests simulating traffic-load-induced settlement of alluvial silt subsoil”. Soil Dyn. Earthq. Eng., 58: 10-20.
Canada E. 2001. Priority Substances List Assessment Report: Road Salts. Canadian Environmental Protection Act,.
 
Gong, X. 2005. “Guide to design of groundwater treatment for high-type highway”. China Communications Press, Beijing.
Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A. and Du, Y. J. 2011. “Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite”. Appl. Clay Sci., 52(1-2): 150-159.
Horpibulsuk, S., Suksiripattanapong, C., Samingthong, W., Rachan, R. and Arulrajah, A. 2016. “Durability against wetting-drying cycles of water treatment sludge-fly ash geopolymer and water treatment sludge-cement and silty clay-cement systems”. J. Mater. Civil Eng., 28(1): 04015078.
Latifi, N., Marto, A. and Eisazadeh, A. 2015a. “Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro-and micro-structural considerations”. Environ. Earth Sci., 73(3): 1133-1141.
Latifi, N., Marto, A. and Eisazadeh, A. 2015b. “Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive”. Acta Geotech., 11(2): 433-443.
Türköz, M. and Tosun, H. 2011. “A GIS model for preliminary hazard assessment of swelling clays, a case study in Harran Plain (SE Turkey)”. Environ. Earth Sci., 63(6): 1343-1353.
Turkoz, M. and Vural, P. 2013. “The effects of cement and natural zeolite additives on problematic clay soils”. Sci. Eng. Compos. Mater., 20(4): 395-405.
Turkoz, M., Savas, H., Acaz, A. and Tosun, H. 2014. “The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics”. Appl. Clay Sci., 101: 1-9.
Thenoux G, Vera S. 2002. Evaluación de la efectividad del cloruro de magnesio hexahidratado (Bischofita) como estabilizador químico de capas de rodadura granulares. Materiales de construcción. (265):5-22.
 
Zhang, Y., Sun, W. and Li, Z. 2010. “Composition design and microstructural characterization of calcined kaolin-based geopolymer cement”. Appl. Clay Sci., 47(3-4): 271-275.