ارزیابی عملکردی مدل برگر و مدل پیشنهادی جدید بر پایه تکنیک برنامه‌نویسی ژنتیک در تخمین رفتار ویسکو- الاستیک بتن آسفالتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، رشته راه و ترابری، دانشگاه سمنان

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

تحلیل روسازی راه­ها و مواد تشکیل­دهنده آنها همواره به دلیل شناخت بهتر رفتار آنان تحت شرایط متفاوت از اهمیت بالایی برخوردار بوده و باعث درک بهتر و در نتیجه طرح روابط دقیق‌تر می‏گردد. با توجه به گستره وسیع کاربرد مخلوط­های آسفالت در دنیا، ارزیابی رفتارهای مختلف این مخلوط­ها از جنبه­های مختلف عملکردی و ایمنی از اهمیت به­سزایی برخوردار می­باشد. با توجه به اینکه مخلوط­های آسفالتی به طور ذاتی و به سبب قیر محتوی، نسبت به تغییرات دما بسیار حساس هستند، لذا شناسایی و بررسی رفتار ویسکو- الاستیک و ویسکو- الاستو پلاستیک این مخلوط­ها و تعیین پارامترهای مؤثر بر این رفتار که بسیار وابسته به تغییرات دماست، از اهمیت ویژه­ای برخوردار است. هدف از این پژوهش، ارزیابی عملکردی مدل برگر و مدل پیشنهادی جدید بر پایه تکنیک برنامه­نویسی ژنتیک در تخمین رفتار ویسکو- الاستیک بتن آسفالتی می­باشد. برای این منظور، تعدادی آزمون خزش دینامیک تحت دماهای مختلف و سطوح متفاوت تنش انجام گردید. بر طبق نتایج به‏دست آمده، عملکرد مدل پیشنهادی بر پایه برنامه­نویسی ژنتیک کاملاً رضایت­بخش است. همچنین، مدل جدید ارائه شده، محققین بیشتری را که قصد انجام تحقیقات مشابه دارند، بدون نیاز به انجام آزمون­های مخرب، یاری خواهد نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Evaluation of Burgers Model and New Proposed Model Based on Genetic Programming Technique in Estimation of Visco-Elastic Behavior of Asphalt Concrete

نویسندگان [English]

  • Seyed Mohammad Mirabdolazimi 1
  • Gholamali Shafabakhsh 2
1 Ph.D. candidate, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran.
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, I. R. Iran.
چکیده [English]

Analysis of the pavements and their ingredients has always been important due to a better understanding of their behavior under different conditions and leads to better understanding and providing more accurate relations. Due to the extent of asphalt mixture application in the world, assessment of different behaviors of these mixes is very important from the various aspects of performance and safety. Given that the asphalt mixes are inherently very sensitive to temperature changes due to bitumen content, identification and analysis of the viscoelastic and visco-elasto-plastic behavior of the mixes is of particular importance. This research aims at performance evaluation of Burgers model and anew proposed model based on genetic programming techniqe in estimating visco-elastic behavior of asphalt concrete. For this purpose, a number of dynamic creep tests under various temperatures and different stress levels were done. Results showed that performance of the new proposed model based on genetic programming techniqe is quite satisfactory. Also, the new proposed model will help more researchers, willing to perform similar studies, without carrying out destructive tests.

کلیدواژه‌ها [English]

  • Creep
  • Visco-elastic model
  • Asphalt Mixture
  • Burgers model
  • Genetic programming

AASHTO. 1993. Guide for Design of Pavement Structures.

Alavi, A. H., Hasni, H., Zaabar, I. and Lajnef, M. N. 2017. “A new approach for modeling of flow number of asphalt mixtures”. Arch. Civ. Mech. Eng., 17: 326-335.

Al-Khateeb, G. G. and Ghuzlan, Kh. A. 2014. “The combined effect of loading frequency, temperature, and stress level on the fatigue life of asphalt paving mixtures using the IDT test configuration”. Int. J. Fatigue, 59: 254-261.

Arabani, M. and Kamboozia, N. 2014. “New achievements in visco-elastoplastic constitutive model and temperature sensitivity of glasphalt. Int. J. Pavement Eng., 15(9): 810-830.

Coleri, E., Guler, M., Gungor, A. G. and Harvey, J. T. 2010. “Prediction of subgrade resilient modulus using genetic algorithm and curve-shifting methodology”. J. Transp. Res. Board, DOI: http://dx.doi.org/10.3141/2170-08.

Elseifi, M. A., Al-Qadi, I. L., Yoo, P. J. and Janajreh, I. 2005. “Quantification of pavement damage caused by dual and wide-base tires”. J. Transp. Res. Board, 1940: 125-135.

Elseifi, M. A., Al-Qadi, I. L. and Yoo, P. J. 2006. “Viscoelastic modeling and field validation of flexible pavements”. ASCE, J. Eng. Mech., 132(2): 172-178.

Gopalakrishnan, K., Kim, S., Ceylan, H. and Khaitan, S. K. 2010. “Natural selection of asphalt mix stiffness predictive models with genetic programming”. Civil, Construction and Environmental Engineering Conference Presentations and Proceedings, Paper 17.

Karlaftis, A. G. and Badr, A. 2015. “Predicting asphalt pavement crack initiation following rehabilitation treatments”, Transp. Res. Part C: Emerg. Tech., 55: 510-517.

Koza, J. R. 1992. “Genetic Programming: On the Programming of Computers by Means of Natural Selection”. The MIT Press, Cambridge, Massachusetts.

Lee, S. 2003. “Long-term performance assessment of asphalt concrete pavements using the third scale model mobile loading simulator and fiber reinforced asphalt concrete”. PhD Dissertation, Department of Civil and Environmental Engineering, North Carolina State University.

Mazari, M. and Niazi, Y. 2015. “Modeling the effect of filler materials on performance of hot mix asphalt using genetic programming”. Airfield and Highway Pavements.

Pirabarooban, S., Zaman, M. and Tarefder, R. A. 2003. “Evaluation of rutting potential in asphalt mixes using finite element modeling”. The Transportation Factor 2003, Annual Conference and Exhibition of the Transportation Association of Canada.

Sector, K. E. and Monismith, C. L. 1961. “Analysis of triaxial test data on asphalt concrete using viscoelastic principles”. Highway Research Board Proceedings, 40: 295-314.

Sollazzo, G., Fwa, T. F. and Bosurgi, G. 2017. “An ANN model to correlate roughness and structural performance in asphalt pavements”. J. Constr. Build. Mater., 134: 684-693.

Sousa, J. B., Craus, J. and Monismith, C. L. 1991. “Summary Report on Permanent Deformation in Asphalt Concrete”. SHRP-A/IR-91-104, Transportation Research Board, National Research Council, Washington, D. C.

Souza, F. V. and Castro, L. S. 2012. “Effect of temperature on the mechanical response of thermo-viscoelastic asphalt pavements”. J. Constr. Build. Mater., 30: 574-582.

Tapkın, S., Çevik, A., Uşar, U. and Gülşan, E. 2013. “Rutting prediction of asphalt mixtures modified by polypropylene fibers via repeated creep testing by utilising genetic programming”. Mater. Res., 16(2): 277-292.

Terzi, S., Saltan, M., Morova, N. and Serin, S. 2013. “Modeling Marshall stability of steel fiber reinforced asphalt concrete by genetic expression programming”. 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 23-25 May 2013, Epoka University, Tirana, Albania.

Yang, P. 2014. “Rutting deformations analysis for asphalt pavement based on the visco-elastoplastic theory”. J. Adv. Mater. Res., 838-841: 1227-1233.

Ye, Y., Yang, x., Chen, Ch., 2009, “Experimental researches on visco-elastoplastic constitutive model of asphalt mastic” . J. Constr. Build. Mater., 23: 3161–3165.

Zhang, J., Liu, G., Hu, Zh., Zhu, C., Pei, J. and Jin, L. 2016. “Effects of temperature and loading frequency on asphalt and filler interaction ability”. J. Constr. Build. Mater., 124: 1028-1037.