معاونت برنامهریزی و نظارت راهبردی ریاست جمهوری. 1388. "راهنمای طراحی و اجرای بتن غلتکی در روسازی راههای کشور. نشریه شماره 354.
عمادی، م. و مدنی، س. ح. 1395. " ارزیابی مدلهای هوش مصنوعی در تخمین مقامت فشاری بتن غلتکی". هشتمین کنفرانس ملی سالانه بتن ایران، 15 تا 17 مهر، تهران.
Abraham, A. 2005. “Artificial neural networks”. Handbook of Measuring System Design.
Alshihri, M. M., Azmy, A. M. and El-Bisy, M. S. 2009. “Neural networks for predicting compressive strength of structural light weight concrete”. Constr. Build. Mater., 23(6): 2214-2219.
Amani, J. and Moeini, R. 2012. “Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network”. Sci., Iran., 19: 242-248.
Atiş, C. D., Sevim, U. K., Özcan, F., Bilim, C., Karahan, O. and Tanrikulu, A. H. 2004. “Strength properties of roller compacted concrete containing a non-standard high calcium fly ash”. Mater. Lett., 58(9): 1446-1450.
Bilgehan, M. 2011. “Comparison of ANFIS and NN models- with a study in critical buckling load estimation”. Appl. Soft Comput. J. 11(4): 3779-3391.
Chithra, S., Senthil Kumar, S. R. R., Chinnaraju, K. and Ashmita, F. A. 2016. “A comparative study on the compressive strength prediction models for high performance concrete containing nano silica and copper slag using regression analysis and artificial neural networks”. Constr. Build. Mater., 114: 528-535.
Duan, Z. H., Kou, S. C. and Poon, C. S. 2013. “Prediction of compressive strength of recycled aggregate concrete using artificial neural networks”. Constr. Build. Mater., 40: 1200-1206.
Fausett, L. 1994. “Fundamentals of Neural Networks: Architectures, Algorithms, and Applications”. Prentice-Hall, Inc.
Gagne, R. 1999. “Proportioning for non-air-entrained RCCP”. Concrete Int., 21(5): 37-41.
Ni, H. G. and Wang, J. Z. 2000. “Prediction of compressive strength of concrete by neural networks”. Cement Concrete Res., 30(8): 1245-1250.
Jang, J. S. R. 1993. “ANFIS: Adaptive-network-based fuzzy inference system”. IEEE Trans. Sys., Man, Cyber., 23(3):665-685.
Kazeminezhad, M. H., Etemad-Shahidi, A. and Mousavi, S. J. 2005. “Application of fuzzy inference system in the prediction of wave parameters”. Ocean Eng., 32: 1709-1725.
Mardani-Aghabaglou, A., Andiç-Çakir, Ö. and Ramyar, K. 2013. “Freeze-thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method.” Cement Concrete Compos., 37(1): 259-266.
Ozcan, F., Atis, C. D., Karahan, O., Oncuoglu, E. and Tanyildizi H., 2009. “Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete”. Adv. Eng. Software, 40: 856-863.
Pham, A. D., Hoang, N. D. and Nguyen, Q. T. 1993. “Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression”. J. Comp. Civ. Eng., 30(3), DOI: 10.1061/(ASCE)CP.1943-5487.0000506.
Sadoghi Yazdi, J., Kalantary, F. and Sadoghi Yazdi, H. 2013. “Prediction of elastic modulus of concrete using support vector committee method”. J. Mater. Civ. Eng., 25(1): 9-20.
Sadrmomtazi, A., Sobhani, J. and Mirgozar, M. A. 2013. “Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS”. Constr. Build. Mater., 42: 205-216.
Sarıdemir, M. 2009. “Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic”. Adv. Eng. Software 40(9): 920-927.
Shafiei Nikabadi, A. and Azimi, M. 2015. “Demand forecasting in a supply chain using machine learning algorithms”. J. Model. Eng. 13(41): 127-136.
Sherrod, P. H. 2014. “DTREG: Predictive modeling software”.
Siddique, R., Aggarwal, P. and Aggarwal, Y. 2011. “Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks”. Adv. Eng. Software, 42(10): 780-786.
Siddique, R., Aggarwal, P., Aggarwal, Y. and Gupta, S. M.. 2008. “Modeling properties of self-compacting concrete: Support vector machines approach”. Comp. Concrete, 5(5): 123-129.
Sobhani, J., Najimi, M., Pourkhorshidi, A. R. and Parhizkar, T. 2010. “Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models”. Constr. Build. Mater. 24(5): 709-718.
Sobhani, J., Khanzadi, M. and Movahedian-Attar, A. 2013. “Support vector machine for prediction of the compressive strength of no-slump concrete”. Comp. Concrete, 11(4): 337-350.
Trocoli, A., Dantas, A., Batista Leite, M. and De Jesus Nagahama, K. 2013. “Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks”. Constr. Build. Mater. 38: 717-722.