مقایسه روش های آنالیز بافت تصویر به منظور شناسایی و طبقه بندی خودکار خرابی‏های روسازی آسفالتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 استادیار، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 استاد، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

ارزیابی عملکرد روسازی یکی از مهم­ترین عناصر سیستم­های مدیریت روسازی جهت تعیین راهکار بهینه عملیات ترمیم و نگهداری راه محسوب می­شود. پیمایش خرابی­های سطحی راه جزو مراحل اصلی فرایند ارزیابی روسازی در سطح شبکه و همچنین در سطح پروژه است. در دو دهه اخیر، تحقیقات گسترده­ای پیرامون توسعه روش­های خودکار، جهت شناسائی خرابی­های روسازی انجام گرفته که اغلب بر پایه بینایی ماشین و فنون پردازش تصویر می­باشند. یکی از مهم­ترین اجزای تشکیل­دهنده سیستم بینایی ماشین، فرایند استخراج ویژگی می­باشد. در این تحقیق، پس از برداشت تصاویر شش گروه مختلف از خرابی­های سطح روسازی آسفالتی در شرایط کنترل شده، به منظور مقایسه روش­های مختلف آنالیز آماری بافت تصویر در تشخیص و طبقه­بندی خودکار انواع خرابی­ها، از شاخص­های آماری مرتبه اول بر پایه هیستوگرام تصویر، شاخص­های آماری مرتبه دوم بر پایه ماتریس هم­رخداد و از آمارگان مرتبه سوم و بالاتر مبتنی بر ماتریس طول تکرار سطوح خاکستری، استفاده شده است. نتایج حاصل از کلاس­بندی تصاویر خرابی بر اساس روش کمینه فاصله ماهالانوبیس، حاکی از آن است که آمارگان مستخرج از هیستوگرام و ماتریس هم­رخداد سطوح خاکستری، اگر چه در شناسایی ترک­های پوست سوسماری نسبت به ماتریس طول تکرار، حساسیت عملکردی طبقه­بندی بهتری داشته، اما به طور میانگین شاخص­های آماری مرتبه سوم و بالاتر بر پایه ماتریس طول تکرار سطوح خاکستری، با دقت عملکردی 80%، نسبت به سایر رویکرد­های توصیف بافت به­کارگیری شده در این تحقیق، نتایج برتری در شناسایی و کلاسه­بندی خرابی­های سطح روسازی آسفالتی حاصل نموده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparison of Image Texture Analysis Methods for Automatic Recognition and Classification of Asphalt Pavement Distresses

نویسندگان [English]

  • Reza Shahabian Moghaddam 1
  • Ali Sahaf 2
  • Abolfazl Mohamadzadeh Moghaddam 2
  • Hamid Reza Pourreza 3
1 Graduated MSc., Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, I. R. Iran.
2 Assistant Professor, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, I. R. Iran.
3 Professor, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, I. R. Iran.
چکیده [English]

Evaluation of pavement performance plays a major role in pavement management systems for determination of optimum strategy in repair and maintenance of the road. One of the most prominent assets in evaluation of the pavement at network and project level is identification and survey of surface pavement distresses. In the past two decades, extensive studies have been carried out in order to develop automatic methods for pavement evaluation. Most of these methods are based on machine vision and image processing techniques. One of the most important components of machine vision system is feature extraction. In the present study, after acquisition of six different group of asphalt pavement distresses under controlled condition, in order to compare different image texture processing methods for automatic recognition and categorising of distresses, first order statistical indices based on image intensity histogram, second order statistical indices based on grey level co-occurrence matrix and third and higher order statistics based on grey level run-length matrix have been used. Based on the results of the classification of distress images acquired by Mahalanobis minimum distance method, it can be concluded that although statistics extracted from histogram and grey level co-occurrence matrix have superior sensitivity in detection of alligator cracks, but third and higher order statistical indices based on grey level run-length matrix provide better results, with 80% classification accuracy, compared to other texture analysis approaches applied in the present research.

کلیدواژه‌ها [English]

  • Pavement performance
  • Grey level co-occurrence matrix
  • Gray level run-length matrix
  • Image processing
Acosta, J. A., Figueroa, J. L. and Mullen, R. L. 1995. “Algorithm for pavement distress classification by video image analysis”. Transport. Res. Record, 1505: 27-38.
Aggarawal, N. and Agrawal, R. K. 2012. “First and second order statistics features for classification of magnetic resonance brain images”. J. Signal Info. Process., 3: 146-153.
Anuradha, K. and Sankaranarayanan, K. 2013. “Statistical feature extraction to classify oral cancers”. J. Global Res. Comp. Sci., 4(2): 8-12.
Cheng, H. D., Glazier, C. and Hu, Y. G. 1999. “Novel approach to pavement craking detection based on fuzzy set theory”. J. Comp. Civ. Eng., 13(3): 270-280.
Chua, K. M. and Xu, L. 1994. “Simple procedure for identifying pavement distresses from video images”. J. Transport. Eng., 120(3): 412-431.
Dettori, L. and Semlera, L. 2007. “A comparison of wavelet, ridgelet, and curvelet based texture classification algorithms in computed tomography”. Comp. Biol. Med., 37(4): 486-498.
Gonzalez, R. C. and Woods, R. E. 2006. “Digital Image Processing”. Third Edition, Prentice Hall, Upper Saddle River, NJ, USA.
Jiang, J., Liu, H., Ye, H. and Feng, F. 2015. “Crack enhancement algorithm based on improved EM”. J. Comp. Sci., 12(3): 1037-1043.
Lee, D. 2003. “A Robust Position Invariant Artificial Neural Network for Digital Pavement Crack Analysis”. Technical Report, TRB Annual Meeting, Washington, DC, USA.
Manning, K. and Mohajeri, R. 1991. “An operating system of pavement distress diagnosis by image processing”. Transport. Res. Record, 1311: 120-130.
Moghadas Nejad, F. and Zakeri, H. 2011a. “A comparison of multi-resolution methods for detection and isolation of pavement distress”. Expert Syst. Appl., 38(3): 2857-2872.
Moghadas Nejad, F. and Zakeri, H. 2011b. “An expert system based on wavelet transform and radon neural network for pavement distress classification”. Expert Syst. Appl., 38(6): 7088-7101.
Moghadas Nejad, F. and Zakeri, H. 2011c. “An optimum feature extraction method based on Wavelet–Radon Transform and Dynamic Neural Network for pavement distress classification”. Expert Syst. Appl., 38(8): 9442-9460.
Nallamothu, S. and Wang, K. C. P. 1996. “Experimenting with recognition accelerator for pavement distress identification”. Transport. Res. Record, 1536: 130-135.
Ouyang, A., Dong, Q., Wang, Y. and Liu, Y. 2014. “The classification of pavement crack image based on beamlet algorithm”. 7th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture.
Rosa, P. 2012. “Automatic pavement crack detection and classification system”. Transport. Res. Board, 11: 57-65.
Salman, M., Mathavan, S., Kamal, K. and Rahman, M. 2013. “Pavement crack detection using the Gabor filter”. Proc. 16th International IEEE Conference on Intelligent Transportation Systems: Intelligent Transportation Systems for All Modes, The Hague, Netherlands, pp. 2039-2044.
Singh, R. 2016. “A comparison of gray-level run length matrix and gray-level co-occurrence matrix towards cereal grain classification”. Int. J. Comp. Eng. Technol. (IJCET), 7(6): 9-17.
Srinivasan, G. N. and Shobha, G. 2008. “Statistical texture analysis”. Proc. World Acad. Sci., Eng. Technol., 36: 207-213.
Tang, X. 1998. “Texture information in run-length matrices”. IEEE Trans. Image Process., 7(11): 1602-1609.
Wang, K. C. P. 2009. “Wavelet-based pavement distress image edge detection with Trous algorithm”. Transport. Res. Record, 2024: 73-81.
Wang, K. C. P., Li, Q. J., Yang, G., Zhan, Y. and Qiu, Y. 2015. “Network level pavement evaluation with 1 mm 3D survey system”. J. Traffic Transport. Eng., 2(6): 391-398.
Wang, W., Watkins, H. and Kuchikulla, K. 2002. “Digital distress survey of airport pavement surface”. Federal Aviation Administration Airport Technology Transfer Conference, Washington, DC.
Zakeri, H., Moghadas Nejad, F. and Fahimifar, A. 2017. “Image based techniques for crack detection, classification and quantification in asphalt pavement: A review”. Arch. Comp. Meth. Eng., 24(4): 935-977.
Zayed, N. and Elnemr, H. 2015. “Statistical analysis of Haralick texture features to discriminate lung abnormalities”. Int. J. Biomed. Imag., 2015: 1-7.
Zhou, J., Huang, P. S. and Chiang, F. 2006. “Wavelet-based pavement distress detection and evaluation”. Opt. Eng., 45(2): 2006-2011.
Zou, Q., Cao, Y., Li, Q., Mao, Q. and Wang, S. 2008. “CrackTree: Automatic crack detection from pavement images”. Pattern Recog. Lett., 33(3): 227-238.