بررسی تأثیر مصالح تشکیل‌دهنده بر عملکرد بتن غلتکی رویه راه با استفاده از روش کاهش ابعاد و شبیه‌سازی مونت کارلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه عمران، دانشگاه سیستان و بلوچستان، زاهدان

2 دانشیار گروه عمران، دانشکده مهندسی، دانشگاه سیستان و بلوچستان، زاهدان

3 استادیار گروه معماری، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

سازه­های مهندسی، در مراحل ساخت و بهره­برداری، تحت تأثیر عدم قطعیت­های ناشی از پارامترهای ابعادی، خصوصیات مواد و بارگذاری قرار دارند، که عملکرد سازه ساخته شده را تحت تأثیر قرار می­دهند. در این میان، سازه­های بتنی، به دلیل مشکلات اجرایی، شرایط محیطی و تنوع مواد تشکیل­دهنده، بیش از سایر سازه­ها تحت تأثیر اینگونه عدم قطعیت­ها قرار دارند. در مقاله حاضر، عملکرد احتمالاتی بتن غلتکی مورد استفاده در راه­سازی، حاوی مصالح ریزدانه لوماشل و پوزولان مورد بررسی قرار گرفته است. برای این منظور، نسبت آب به سیمان، مقدار پوزولان و مقدار مصالح ریزدانه لوماشل به عنوان متغیرهای تصادفی دارای عدم قطعیت در نظر گرفته شده و از ترکیب روش کاهش ابعاد و شبیه­سازی مونت­کارلو به منظور ارزیابی احتمالاتی این نوع بتن استفاده شده است. طراحی آزمایش بر مبنای روش کاهش ابعاد انجام گرفته و نمونه­های ساخته شده تحت آزمایش­های مقاومت فشاری و جذب آب قرار گرفته­اند. نتایج نشان می­دهد که احتمال خرابی ناشی از جذب آب مقدار 17/0 می­باشد که بیشتر از احتمال خرابی ناشی از مقاومت فشاری (021/0) در بتن غلتکی است. همچنین، با در نظر گرفتن عملکرد بتن غلتکی به صورت سیستم، احتمال خرابی افزایش پیدا می­کند و به مقدار 24/0 می­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Effect of Materials on Performance of RCC Using Dimension Reduction Method and Monte Carlo Simulation

نویسندگان [English]

  • Mostafa Ali ahmad 1
  • Mahmoud Miri 2
  • Mohsen Rashki 3
1 MSc. Student, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran.
2 Associate Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran.
3 Assistant Professor, Department of Architectural Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran.
چکیده [English]

Engineering structures, during construction and operation, are under the influence of uncertainties including: dimensional parameters, materials specification, and loading. Among engineering structures, concrete structures are more sensitive to these uncertainties with respect to performance problems, environmental conditions and diversity of the components. In this study, the probability performance of roller compacted concrete (RCC), used in pavements, was investigated with different amounts of Lumachelle and pozzolan. The water to cement ratio and the amount of pozzolan and Lumachelle fine aggregates were considered as random variables and also the dimension reduction method (DRM), in combination with Monte Carlo simulation, were used for reliability and sensitivity analysis of this kind of concrete. The experimental design was based on the DRM, and compressive strength and water adsorption tests were performed on the specimens. Results showed that the probability of failure due to water adsorption is 0.17, which is more than the probability failure of compressive strength (0.021) in the RCC. Also, the probability of failure increased to 0.24 by assuming the concrete as a system.   

کلیدواژه‌ها [English]

  • Compressive Strength
  • Pozzolan
  • Mechanical properties
  • Water adsorption
  • Lumachelle fine aggregate
  • failure probability
عمادی، م. و مدنی، س. ح. 1396. "مدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان". مهندسی زیرساخت­های حمل و نقل، 11(3): 55-79.
کریمی گوغری، م.، حسنی، ا. و صفرنیا کپته، ت. 1394. "ارائه مدل رگرسیون خطی جهت پیش­بینی درصد مجاز استفاده از خرده آسفالت بازیافتی به عنوان جایگزین سنگدانه در مخلوط بتن غلتکی روسازی". مهندسی حمل ونقل، 6(4): 671-684.
معاونت برنامه­ریزی و نظارت راهبردی رئیس جمهور. 1388. "راهنمای طراحی و اجرای بتن غلتکی در روسازی راه­های کشور". نشریه 354.
ACI 325.10R-95. 2001. “Report on roller-compacted concrete pavements”. American Concrete Institute.
ASTM C 127. 2001. “Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate”. American Society for Testing and Materials.
ASTM C 128. 2001. “Standard test method for density, relative density (specific gravity), and absorption of fine aggregate”. American Society for Testing and Materials.
ASTM C 1435. 1999. “Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer”. American Society for Testing and Materials.
ASTM C 188. 2003. “Standard test method for density of hydraulic cement”. American Society for Testing and Materials.
ASTM C 39. 2014. “Standard test method for compressive strengh of cylindrical concrete specimens”. American Society for Testing and Materials.
ASTM C 642. 2006. “Standard test method for density, absorption, and voids in hardened concrete”. American Society for Testing and Materials.
Bonstrom, H. and Corotis, R. B. 2015. “Building portfolio seismic loss assessment using the first-order reliability method”. Struct. Safety, 52: 113-120.
Cho, T. 2007. “Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method”. Constr. Build. Mater., 21(12): 2031-2040.
Ghasemi, S. A. and Nowak, A. S. 2017a. “Target reliability for bridges with consideration of ultimate limit state”. Eng. Struct., 152: 226-237.
Ghasemi, S. A. and Nowak, A. S. 2017b. “Reliability index for non-normal distributions of limit state functions”. Struct. Eng. Mech., 62(3).
Güneyisi, E., Gesoğlu, M., Algın, Z. and Mermerdaş, K. 2014. “Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method”. Compos. Part B: Eng., 60: 707-715.
Jansson, T., Nilsson, L. and Moshfegh, R. 2008. “Reliability analysis of a sheet metal forming process using Monte Carlo analysis and metamodels”. J. Mater. Process. Technol., 202(1-3): 255-268.
Keshtegar, B. 2016. “Chaotic conjugate stability transformation method for structural reliability analysis”. Comp. Meth. Appl. Mech. Eng., 310: 866-885.
Kong, J. S., Ababneh, A. N., Frangopol, D. M. and Xi, Y. 2002. “Reliability analysis of chloride penetration in saturated concrete”. Probab. Eng. Mech., 17(3): 305-315.
Lee, G., Yook, S., Kang, K. and Choi, D. H. 2012. “Reliability-based design optimization using an enhanced dimension reduction method with variable sampling points”. Int. J. Precis. Eng. Man., 13(9): 1609-1618.
Lee, I., Choi, K .K. and Gorsich, D. 2010. “System reliability-based design optimization using the MPP-based dimension reduction method”. Struct. Multidisc Optim., 41(6): 823-839.
Lee, I., Choi, K. K., Du, L. and Gorsich, D. 2008. “Inverse analysis method using MPP-based dimension reduction for reliability-based design optimization of nonlinear and multi-dimensional systems”. Comp. Meth. Appl. Mech. Eng., 198(1): 14-27.
Li, G. and Zhang, K., 2011. “A combined reliability analysis approach with dimension reduction method and maximum entropy method”. Struct. Multidisc Optim., 43(1): 121-134.
Liu, L. L. and Cheng, Y. M. 2016. “Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation”. Comp. Geotech., 79: 41-54.
Lopez, R. H., Miguel, L. F .F., Belo, I. M. and Souza Cursi, J. E. 2014. “Advantages of employing a full characterization method over FORM in the reliability analysis of laminated composite plates”. Compos. Struct., 107: 635-642.
Metropolis, N. and Ulam, S. 1949. “The Monte Carlo method”.The Am. Stat. Assoc., 44(247): 335-41.
Naess, A., Leira, B. J. and Batsevych, O. 2009. “System reliability analysis by enhanced Monte Carlo simulation”. Struct. Safety, 31(5): 349-355.
Nowak, S. A. and Collins, K. R. 2000. “Reliability of structures”. McGraw-Hill, New York.
Rahman, S. and Xu, H. 2004. “A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics”. Probab. Eng. Mech., 19(4): 393-408.
Rashki, M., Miri, M., Azhdary Moghaddam, M. 2014. “A simulation-based method for reliability based design optimization problems with highly nonlinear constraints”. Autom. Constr., 47: 24-36.
Rezaifar, O., Hasanzadeh, M. and Gholhaki, M. 2016. “Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method”. Constr. Build. Mater., 123: 59-68.
Schueremans, L. and Van Gemert, D. 2005. “Benefit of splines and neural networks in simulation based structural reliability analysis”. Struct. Safety, 27(3): 246-261.
Shi, X., Teixeira, A. P., Zhang, J. and Guedes Soares, C. 2015. “Kriging response surface reliability analysis of a ship-stiffened plate with initial imperfections”. Struct. Infrastruct. Eng., 11(3): 1450-1465.
Wang, G. and Ma, Z. 2017. “Hybrid particle swarm optimization for first-order reliability method”. Comp. Geotech., 81: 49-58.
Yang, H. Z. and Zheng, W. 2011. “Metamodel approach for reliability-based design optimization of a steel catenary riser”. J. Mar. Sci. Technol., 16(2): 202-213.
Youn, B. D. and Wang, P., 2008. “Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method”. Struct. Multidisc Optim., 36(2): 107-123.
Zhang, X. and Pandey, M. D. 2014. “An effective approximation for variance-based global sensitivity analysis”. Reliab. Eng. Sys. Safety, 121: 164-174.
Zhang, H., Mullen, R. L. and Muhanna, R. L. 2010. “Interval Monte Carlo methods for structural reliability”. Struct. Safety, 32: 183-190.
Zhao, Y. G. and Ono, T. 1999. “A general procedure for first/second-order reliability method (FORM/SORM)”. Struct. Safety, 21(2): 95-112.