بررسی توان تصاویر پهپادی دقیق در ارزیابی پدیده فرسودگی آسفالت (نمونه موردی: روستای الوار سفلی، حوالی شهر تبریز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه دامغان، دانشکده علوم زمین، دانشگاه دامغان،دامغان، ایران.

2 کارشناس ارشد سنجش از دور و GIS، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز

3 دانشجوی دکتری حمل و نقل، دانشکده مهندسی عمران، دانشگاه کلمسون، ایالت کارولینای جنوبی، آمریکا

چکیده

پدیده پیری و شیارشدگی آسفالت یکی از عوامل عمده­ی کاهش عمر مفید آن است. در دهه اخیر و با تصاویر دارای دقت مکانی بالا (کمتر از 10 سانتی­متر)، عملاً قابلیت کنترل کیفیت سطح جاده­ها به صورت کمی و با دقت بالا به‏دست آمده است. پژوهش حاضر با هدف بررسی پدیده­ی پیری و شیارشدگی ایجاد شده روی آسفالت و ارزیابی توان DSM مستخرج از تصاویر پهپادی در زمینه کنترل کیفیت آسفالت در روستای الوار سفلی صورت گرفته است. تصویربَرداری فَراطِیفی برای سه نوع آسفالت دارای عمر کمتر از 2 سال، بین 4 تا 7 سال و بیشتر از 10 سال نشان می­دهد که نمودار آسفالت داری عمر کمتر از دو سال همواره پایین­تر از سایر نمودارهاست، چرا که قیر استفاده شده در ترکیب آسفالت پس از گذشت مدت مشخصی کیفیت خود را از دست داده، روشن­تر شده و در نتیجه بازتاب سطحی آن بیشتر می­شود. صحت­سنجی نقاط تعلیمی انتخاب شده روی زمین برای فرسودگی، دقت کلی برابر 95% و ضریب کاپا 95 را نشان می‏دهد که بیانگر دقت بالا و صحت نتایج است. همچنین، دقت مکانی بالا (7.5 cm) امکان مطالعه شیارشدگی­های نوع دوم و سوم و امکان بررسی عمق ترک خوردگی و تنش با استفاده از این تصاویر در حد سانتی‏متر را نشان می‏دهد. نتایج بررسی­ها نشان داد که DSM حاصل از هم­پوشانی تصاویر پهپادی، قابلیت استخراج شیب‏های عرضی سطوح معابر و خیابان­ها را داراست که این مورد در بررسی میزان نشست آسفالت در گذر زمان کاربردی است. در صورت رفع مشکل و استانداردسازی شیب سطوح جاده­ها و معابر، عملاً میزان آبگرفتگی معابر در فصول سرد کاهش یافته و بر عمر مفید آسفالت افزوده می‏شود.

کلیدواژه‌ها


عنوان مقاله [English]

Road Pavement Distress Extraction Using UAV Imageries (Case Study: Alvar-e-Sofla Village near Tabriz)

نویسندگان [English]

  • Ali Akbar Taghipour 1
  • Hamid Rasouli 2
  • Afshin famili 3
1 Assistant Profesor, Faculty of Earth Sciences, Damghan University, Damghan, I. R. Iran.
2 MSc. in GIS and RS, Faculty of Planning and Environmental Sciences, Tabriz University, Tabriz, I. R. Iran.
3 PhD Candidate, Department of Civil Engineering, Clemson University, South Carolina, United States of America
چکیده [English]

Aging and rupture phenomena are important factors which decrease the useful life of asphalt. During the recent decade, by using the images with high spatial accuracy (less than 10 cm) the qualitative monitoring of roads’ surfaces has been achieved. The present study has been performed to evaluate the aging and rupture phenomena on asphalt surface and to evaluate the DSM, extracted from drone images, in asphalt quality control in Alvar-e- Sofla village, Tabriz, Iran. Hyperspectral imaging for three kinds of asphalt (less than 2 years, 4 to 7 years and more than 10 years old) revealed that the 2-year old asphalt has always lower graph than the others because, after a while, the asphalt bitumen losses its quality and gets lighter and thus its surface reflection increases. Calibration of selected learning points for distress shows overall accuracy of 95% and CAPA coefficient of 95, which reveals the high accuracy and correctness of the results. Also, high spatial accuracy (7.5 cm) shows the ability to study type 2 and 3 ruptures, in addition to cracking-depth evaluation and stress via these images at centimeter scale. Results showed that the obtained DSM from overlapping of drone images has the ability to extract lateral slopes of pedestrian and streets, which are applicable in evaluation of asphalt subduction amount during the time.  If this problem is fixed and the road slope is standardized, practically the flooding events in cold seasons will be reduced and useful life of asphalt will be increased.

کلیدواژه‌ها [English]

  • Drone
  • Asphalt aging
  • Asphalt rupture
  • Spectral graph
حیدری، ع. ا. 1391. "آسفالت گرم و سرد". سازمان شهرداری­ها و دهیاری­های کشور، تهران.
خبیری، م. م. و خویش اردستانی، ا. 1392. "مروری بر کاربردهای سنجش از دور در تحلیل شرایط سطحی روسازی خیابان‏های شهری". پنجمین کنفرانس برنامه­ریزی و مدیریت شهری، مشهد مقدس.
ذوالفقاری، م. 1367. " نقشه برداری- شناخت کلی". انتشارات دانشگاه صنعتی امیر کبیر.
سلمانی، س. و رسولی، ح. 1396. "سنجش از دور حرارتی". انتشارات پژوهش­های دانشگاهی.
علوی­پناه، ک. 1382. "کاربرد سنجش از دور در علوم زمین (علوم خاک) ". دانشگاه تهران.
غفارپور جهرمی، س. و خدایی، ع. 1388. "تأثیر خصوصیات فیزیکی- هندسی فیلترهای نوین و سنتی بر مشخصات مکانیکی مخلوط­های آسفالتی". پژوهش­نامه حمل و نقل، 6(1): 41-50.
فاطمی عقدا، س. و رضایی، ی. 1393."مبانی سنجش از دور". انتشارات آزاده تهران.
مختاری، م. ح. و نجفی، ا. 1394. "مقایسه روش­های طبقه­بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری­های اراضی از تصاویر ماهواره­ای لندست TM. علوم آب و خاک، 19(72): 35-44.
مرکز آمار ایران. 1395. " نتایج تفصیلی سرشماری عمومی نفوس و مسکن (کل کشور)". تهران.
نیکخو، ن.، ایلدرمی، ع. و نوری، ح. 1394. تحولات کاربری اراضی شهر ملایر با بهره­گیری از سنجش از دور. فصل­نامه آمایش محیط، 30: 63-86.
وزرات مسکن و شهرسازی. 1375. "راهنمای آیین­نامه طراحی راه­های شهری". جلد 3، بخش اجزای نیم­رخ­های عرضی.
Airsight UAV. 2016. “Pavement inspections”. Available online: https://www.airsight.de/en/consulting/uav- aerodrome-inspections.html#references (accessed on14 March 2016).
Aksoy, A., Şamlioglu, K., Tayfur, S. and Özen, H. 2005. “Effects of various additives on the moisture damage sensitivity of asphalt mixtures”. Constr. Build. Mater., 19(1): 11-18. 
Askari, G., Li, Y. and MoezziNasab, R. 2014. “An adaptive polygonal centroidal Voronoi Tessellation algorithm for segmentation of noisy SAR images”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, The 1st ISPRS International Conference on Geospatial Information Research, 15-17 November, Tehran, Iran.
Attoh-Okine, N. and Adarkwa, O. 2013. “Pavement condition surveys-overview of current practices”. Delaware Center for Transportation, University of Delaware, Newark, USA.
Cortes, C. and Vapnik, V. 1995. “Support-vector networks”. Machine Learning, 20: 273-297.
Cunningham, M. 2009. “More than just the Kappa coefficient: A program to fully characterize inter-rater reliability between two raters”. SAS Global Forum 2009, Paper 242, pp. 1-7.
Curphey, D. R., Fronek, D. K. and Wilson, J. H. 1986. “Highway pavement surface remote sensing using video image processing”. Proceedings of the ASCE Spring Convention, , 29 April-2 May, Denver, CO, USA.
Guo, H. D. 2010. “Understanding global natural disasters and the role of earth observation”. Int. J. Digit Earth, 3: 221-230.
Hartgen, D. T., Fields, M. G. and Feigenbaum, B. 2014. “21st annual report on the performance of state highway systems (1984-2012)”. Reason Foundation, Los Angeles, CA, USA.
Herold, M. 2004. “Understanding spectral characteristics of asphalt roads”. National Center for Remote Sensing in Transportation, University of California, Santa Barbara.
Hongzhou, G. 2001. “Application of remote sensing technology in engineering geological survey of Datong-Yuncheng Highway”. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources.
Jensen, J. R. and Cowen, D. D. 1999. “Remote sensing of urban/suburban infra structure and socio-economic attributes”. Photogramm. Eng. Remote Sens., 81: 709-720.
Kim, H., Soleymani, H., Han, H. and Nam, H. 2006. “Evaluation of asphalt pavemen track sealing performance using image processing technique”. Proceedings of Software International Symposium on Automation and Robotics in Construction (ISARC), ,3-5 October, Tokyo, Japan, pp. 341-345.
Lippitt, C. D. 2015. “Perspectives from the field: Remote sensing from small unmanned platforms: A paradigm shift”. Environ. Pract., 17(3): 235-236.
McGhee, K. H. 2004. “Automated pavement distress collection techniques: A synthesis of highway practice”. National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, USA.
Mettas, C., Themistocleous, K., Neocleous, K. and Hadjimitsis, D. G. 2015.”Monitoring Asphalt pavement damages using remote sensing techniques”. Proceedings of SPIE, The International Society for Optical Engineering 9535, June.
Schnebele, E., Tanyu, B. F., Cervone, G. and Waters, N. 2015. “Review of remote sensing methodologies for pavement management and assessment”. Eur. Transport. Res. Rev., 7: 1-19.
Tang, L. and Shao, G. 2015. “Drone remote sensing for forestry research and practice”. J. For. Res., 26: 791-797.
Timm, D. H. and McQueen, J. M. 2004. “A study of manual vs. automated pavement condition surveys”. Alabama Department of Transportation, Montgomery, AL, USA.
Wang, K. C. P. 2000. “Designs and implementations of automated systems for pavement surface distress survey”. J. Infrastruct. Syst., 6: 24-32.
Wolters, A., Zimmerman, K., Schattler, K. and Rietgraf, A. 2011. “Implementing pavement management systems for local agencies”. Illinois Center for Transportation, Rantoul, IL, USA.
Yuan, X., Fu, J., Sun, H. and Toth, C. 2009. “The application of GPS precise point positioning technology in aerial triangulation’. ISPRSJ Photogramm. Remote Sens., 64: 541-550.
Zhang, S., Bogus, S. M., Lippitt, C. D., Neville, P. R. H., Zhang, G., Chen, C. and Valentin, V. 2015. “Extracting pavement surface distress conditions based on high spatial resolution multispectral digital aerial photography”. Photogramm. Eng. Remote Sens., 81(9): 709-720.