مطالعه آزمایشگاهی و مدل‌سازی آماری عملکرد روسازی بتن غلتکی حاوی زباله‌های پت، الیاف بازیافتی و پودر متاکائولن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه سمنان

2 استاد دانشگاه سمنان

3 استادیار دانشگاه فردوسی مشهد

چکیده

در این مقاله، امکان استفاده از خرده ذرات پت حاصل از بازیافت بطری‌های حاوی مواد آشامیدنی به‌عنوان جایگزین بخش ریزدانه روسازی بتن غلتکی راه‌ها (RCCP)، مورد ارزیابی قرار گرفته است. با هدف ارتقاء عملکرد این محصول، استفاده از متاکائولن به‌عنوان جایگزین سیمان و الیاف فولادی بدست‌آمده از بازیافت لاستیک وسایل‌نقلیه مدنظر قرار داشته است. به‌منظور پوشش کلیه حالت‌های ترکیب متغیرها، از روش سطح پاسخ با توانایی پیش‌بینی روند تغییرات مقادیر پاسخ، در محدوده تغییرات پارامترهای مستقل، بهره گرفته شده است. این روش با تعیین 20 طرح آزمایش، صرفه‌جویی زمان و هزینه با امکان تحلیل کامل نتایج را در اختیار گذاشته است. در این فرایند، عملکرد نمونه‌های RCCP در قالب تعیین مقادیر جذب آب، میزان تخلخل، سرعت امواج التراسونیک و میزان مقاومت فشاری در سنین 7 و 28 روز بررسی گردیده است. مدل‌سازی پاسخ‌ها بر اساس تحلیل واریانس صورت گرفته و بهترین مدل برای هر پاسخ برآورد شده است. همچنین بهترین درصد استفاده از مصالح (طرح بهینه)، با انجام بهینه‌سازی چند هدفه بر روی مدل‌های تهیه شده، صورت پذیرفته است. براساس نتایج، استفاده از پت باعث افزایش میزان جذب آب و تخلخل مخلوط و در مقابل کاهش مقاومت فشاری و سرعت امواج التراسونیک در نمونه‌های موردآزمایش گردیده است. همچنین کاربرد متاکائولن به‌طور کلی بهبود مقاومت فشاری و سرعت امواج التراسونیک و کاهش تخلخل و جذب آب مخلوط را به‌دنبال داشته است و الیاف فولادی بازیافتی عموما وابسته به دیگر اجزاء مخلوط رفتار نشان داده‌اند. محصول نهایی پیشنهاد شده برمبنای بهینه‌سازی مدل‌های آماری، مخلوط RCCP با سهم 29 درصدی جایگزینی حجم مصالح ریزدانه با پت، 20 درصد وزن سیمان با پودر متاکائولن و افزودن الیاف بازیافتی به‌میزان 2 درصد از وزن کل مخلوط (معادل 72/0 حجم مخلوط) می‌باشد. محصولی که ضمن تامین مقاومت سازه‌ای، حفظ منابع طبیعی، بازیافت پاک زباله‌ها، کاهش انتشار گازهای گلخانه‌ای و صرفه‌جویی اقتصادی را به ارمغان خواهد آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study and statistical modeling of roller compacted concrete pavement behavior containing waste PET particles, recycled fibers and metakaolin powder

نویسندگان [English]

  • Reza Noroozi 1
  • Gholamali Shafabakhsh 2
  • Ali Kheyroddin 2
  • Abolfazl Mohammadzadeh Moghaddam 3
1 Ph.D candidate, Faculty of Civil Engineering, Semnan University
2 Professor, Faculty of Civil Engineering, Semnan University
3 Assistant Professor, Department of Civil Engineering, Engineering Faculty, Ferdowsi University of Mashhad
چکیده [English]

This study examined the possibility of using PET aggregates as a partial substitute for natural fine-grained aggregates in Roller Compacted Concrete Pavement (RCCP) mixtures. To enhance the performance of RCCP, the mixtures were also modified by using pozzolanic Metakaolin (MK) as a partial substitute for cement and adding steel fibers obtained from the recycling of worn vehicle tires. The response surface methodology (RSM), which is capable of predicting the variations of a response value in the variations range of independent variables, was used to cover all possible mix compositions. Using this method, 20 mix designs were prepared, which allowed for significant time and cost saving in experiments without sacrificing thoroughness. The behavior and characteristics of RCCP specimens in terms of water absorption, ultrasonic pulse velocity and compressive strength at the age of 7 and 28 days were investigated. The obtained responses were used to develop statistical models, which were then utilized in the optimization of mix design with the help of analysis of variance. The results showed that the use of PET aggregates increased water absorption and decreased the compressive and flexural strength of the RCCP specimens. Partial replacement of cement with MK generally improved the performance of the specimens. The effect of shredded recycled steel fibers (SRSF) was generally dependent on other components of the mixture. The optimal mix design obtained from the statistical models involves replacing 29vol% of fine aggregate with PET, replacing 20wt% of cement with MK powder, and adding 2wt% SRSF to the mixture. The proposed mix design contributes to clean recycling of PET and conservation of natural resources and reduces the cost and carbon footprint of RCCP construction with considering the standard requirements for pavement structures.

کلیدواژه‌ها [English]

  • Roller compacted concrete pavement
  • Recycled PET particle
  • Metakaolin
  • Shredded recycled steel fiber
  • Response surface methodology
ACI Committee 211. 2009. “Guide for selecting proportions for no-slump concrete”. Reported by ACI Committee 211, Vol. 02.
ACI Committee 325. 2001. “Report on roller-compacted pavements”. Vol. 95.
Aiello, M. A., Leuzzi, F., Centonze, G. and Maffezzoli, A. 2009. “Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength”. Waste Manage., 29(6): 1960-1970.
Akçaözoğlu, S. and Atiş, C. D. 2011. “Effect of granulated blast furnace slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates”. Constr. Build. Mater., 25(10): 4052-4058. https://doi.org/10.1016/j.conbuildmat.2011.04.042.
Akçaözoğlu, S. and Ulu, C. 2014. “Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends”. Constr. Build. Mater., 58: 31-37. https://doi.org/10.1016/j.conbuildmat. 2014.02.011.
Akçaözoğlu, S., Atiş, C. D. and Akçaözoğlu, K. 2010. “An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete”. Waste Manage., 30(2): 285-290. https://doi.org/10.1016/j. wasman.2009.09.033.
Akçaözoğlu, S., Akçaözoğlu, K. and Atiş, C. D. 2013. “Thermal conductivity, compressive strength and ultrasonic wave velocity of cementitious composite containing waste PET lightweight aggregate (WPLA)”. Comp. Part B: Eng., 45(1): 721-726. https://doi.org/10.1016/j.compositesb.2012.09.012.
Albano, C., Camacho, N., Hernandez, M., Matheus, A. and Gutierrez, A. 2009. “Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios”. Waste Manage., 29(10): 2707-2716.
Aldahdooh, M. A. A., Bunnori, N. M. and Johari, M. A. M. 2013. “Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method”. Mater. Design, 52: 957-965. https://doi.org/https://doi.org/10.1016/j.matdes.2013.06.034.
Alsaif, A., Bernal, S. A., Guadagnini, M. and Pilakoutas, K. 2018. “Durability of steel fibre reinforced rubberised concrete exposed to chlorides”. Constr. Build. Mater., 188: 130-142. https://doi.org/10.1016 /j.conbuildmat.2018.08.122.
Barbhuiya, S., Chow, P. and Memon, S. 2015. “Microstructure, hydration and nanomechanical properties of concrete containing metakaolin”. Constr. Build. Mater., 95; 696-702. https://doi.org/10.1016/j. conbuildmat.2015.07.101.
Batis, G., Pantazopoulou, P., Tsivilis, S. and Badogiannis, E. 2005. “The effect of metakaolin on the corrosion behavior of cement mortars”. Cement Concrete Comp., 27(1): 125-130. https://doi.org/10.1016 /j.cemconcomp.2004.02.041.
Brooks, J. J. and Johari, M. A. M. 2001. “Effect of metakaolin on creep and shrinkage of concrete”. Cement Concrete Comp., 23(6): 495-502.
Chang, D. I. and Chai, W. K. 1995. “Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures”. Nucl. Eng. Design, 156(1): 201-207.
Dadsetan, S. and Bai, J. 2017. “Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash”. Constr. Build. Mater., 146: 658-667. https://doi.org/10.1016/j.conbuildmat.2017.04.158.
Dean, A. and Voss, D. 1991). “Design and Analysis of Experiments”. Springer, New York, NY. https://doi.org/https://doi-org.ezproxy.uwtsd.ac.uk/10.1007/b97673.
Ding, J. T. and Li, Z. J. 2002. “Effects of metakaolin and silica fume on properties of concrete”. ACI Mater. J., 99(4): 393-398. https://doi.org/10.14359/12222.
Dormer, A., Finn, D. P., Ward, P., & Cullen, J. 2013. “Carbon footprint analysis in plastics manufacturing”. Journal of Cleaner Production, 51, 133–141. https://doi.org/10.1016/j.jclepro.2013.01.014.
Duan, P., Shui, Z., Chen, W. and Shen, C. 2013. “Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete”. Constr. Build. Mater., 44: 1-6. https://doi.org/10.1016/j.conbuildmat.2013.02.075.
Duan, P., Yan, C. and Zhou, W. 2016. “Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack”. Ceram. Int., 42(2): 3504-3517. https://doi.org/10.1016/j.ceramint.2015.10.154.
Frigione, M. 2010. “Recycling of PET bottles as fine aggregate in concrete”. Waste Manage., 30(6): 1101-1106.
Garforth, A. A., Ali, S., Hernández-Martínez, J., & Akah, A. 2004. “Feedstock recycling of polymer wastes”. Current Opinion in Solid State and Materials Science, 8(6), 419–425.
Gavela, S., Karakosta, C., Nydriotis, C., Kaselouri-Rigopoulou, V., Kolias, S., Tarantili, P. A., Magoulas, C., Tassios, D. and Andreopoulos, A. 2004. “A study of concretes containing thermoplastic wastes as aggregates”. In: Proceedings of International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, Barcelona, Spain, pp. 911-918.
Hannawi, K., Kamali-Bernard, S. and Prince, W. 2010. “Physical and mechanical properties of mortars containing PET and PC waste aggregates”. Waste Manage., 30(11): 2312-2320.
Ilić, B. R., Mitrović, A. A. and Miličić, L. R. 2010. “Thermal treatment of kaolin clay to obtain metakaolin”. Hemijska Industrija, 64(4): 351-356. https://doi.org/10.2298/HEMIND100322014I.
Jo, B. W., Tae, G. H. and Kim, C. H. 2007. “Uniaxial creep behavior and prediction of recycled-PET polymer concrete”. Constr. Build. Mater., 21(7): 1552-1559.
Kadri, E. H., Kenai, S., Ezziane, K., Siddique, R. and De Schutter, G. 2011. “Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar”. Appl. Clay Sci., 53(4): 704-708.
Khatib, J. M., Baalbaki, O. and ElKordi1, A. A. 2018. “Metakaolin”. In: Waste and Supplementary Cementitious Materials in Concrete. Vol. 25, Elsevier Ltd. https://doi.org/https://doi.org/10.1016/B978-0-08-102156-9.00015-8.
Kou, S. C., Poon, C. S. and Agrela, F. 2011. “Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures”. Cement Concrete Comp., 33(8): 788-795. https://doi.org/10.1016/j.cemconcomp.2011.05.009.
Kumar, S., Panda, A. K., & Singh, R. K. 2011. “A review on tertiary recycling of high-density polyethylene to fuel”. Resources, Conservation and Recycling, 55(11), 893–910.
Lee, M. K. and Barr, B. I. G. 2004. “An overview of the fatigue behaviour of plain and fibre reinforced concrete”. Cement Concrete Comp., 26(4): 299-305. https://doi.org/https://doi.org/10.1016/S0958-9465(02)00139-7.
Lepadatu, D., Hambli, R., Kobi, A. and Barreau, A. 2005. “Optimisation of springback in bending processes using FEM simulation and response surface method”. Int. J. Adv. Manuf. Technol., 27(1-2): 40-47. https://doi.org/10.1007/s00170-004-2146-z.
Lepadatu, D., Hambli, R., Kobi, A. and Barreau, A. 2006. “Statistical investigation of die wear in metal extrusion processes”. Int. J. Adv. Manuf. Technol., 28(3-4): 272-278.
Li, V. C. and Matsumoto, T. 1998. “Fatigue crack growth analysis of fiber reinforced concrete with effect of interfacial bond degradation”. Cement Concrete Comp., 20(5): 339-351.
Li, Z. and Ding, Z. 2003. “Property improvement of Portland cement by incorporating with metakaolin and slag”. Cement Concrete Res., 33(4): 579-584.
Madandoust, R. and Mousavi, S. Y. 2012. “Fresh and hardened properties of self-compacting concrete containing metakaolin”. Constr. Build. Mater., 35: 752-760. https://doi.org/10.1016/j.conbuildmat.2012. 04.109.
Marzouk, O. Y., Dheilly, R. M. and Queneudec, M. 2007. “Valorization of post-consumer waste plastic in cementitious concrete composites”. Waste Manage., 27(2): 310-318.
Montgomery, D. C. 2013. “Design and Analysis of Experiments”. 8th ed., John Wiley & Sons. Retrieved from https://books.google.com/books?hl=en&lr=&id=Py7bDgAAQBAJ&oi=fnd&pg=PA1&ots=X6t3n-MV-5&sig=HN7nP1mfdfL1ppH4809mH8_1C50#v=onepage&q&f=false.
Muduli, R. and Mukharjee, B. B. 2019. “Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete”. J. Clean. Prod., 209: 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221.
Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. 2009. “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”. John Wiley & Sons, Inc., New York.
Naik, T. R., Chun, Y. M., Kraus, R. N., Singh, S. S., Pennock, L. L. C. and Ramme, B. W. 2001. “Strength and durability of roller-compacted HVFA concrete pavements”. Pract. Period. Struct. Design Constr., 6(4): 154-165.
Neocleous, K., Tlemat, H. and Pilakoutas, K. 2006. “Design issues for concrete reinforced with steel fibers, including fibers recovered from used tires”. J. Mater. Civ. Eng., 18(5): 677-685. https://doi.org/10.1258 /itt.2010.100803.
Nuaklong, P., Sata, V. and Chindaprasirt, P. 2018. “Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens”. Constr. Build. Mater., 161: 365-373. https://doi.org/10.1016/j.conbuildmat.2017.11.152.
Pilakoutas, K., Neocleous, K. and Tlemat, H. 2004. “Reuse of tyre steel fibres as concrete reinforcement”. Proc. ICE-Eng. Sustain., 157(3): 131-138. https://doi.org/10.1258/itt.2010.100803.
Pittman, D. W. and Anderton, G. L. 2009. “The use of roller-compacted concrete (RCC) pavements in the United States”. In: Sixth International Conference on Maintenance and Rehabilitation of Pavements and Technological Control (MAIREPAV6), International Society for Maintenance and Rehabilitation of Transportation Infrastructure Transportation Research Board, Retrieved from https://trid.trb.org/view/ 899345.
Rahimi, S. R., Nikbin, I. M., Allahyari, H. and Habibi, T. S. 2016. “Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack”. J. Clean. Prod., 126: 166-177. https://doi.org/10.1016/j.jclepro.2016.03.074.
Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H. and Nikbin, I. M. 2013. “On the mechanical properties of concrete containing waste PET particles”. Constr. Build. Mater., 47: 1302-1308.
Rezaifar, O., Hasanzadeh, M. and Gholhaki, M. 2016. “Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using response surface method”. Constr. Build. Mater., 123: 59-68. https://doi.org/10.1016/j.conbuildmat.2016.06.047.
Rossi, P. and Parant, E. 2008. “Damage mechanisms analysis of a multi-scale fibre reinforced cement-based composite subjected to impact and fatigue loading conditions”. Cement Concrete Res., 38(3): 413-421.
Sabir, B. B., Wild, S. and Bai, J. 2001. “Metakaolin and calcined clays as pozzolans for concrete: a review”. Cement Concrete Comp., 23(6): 441-454.
Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O. and Sadeghi-Nik, A. 2016. “The combined effects of waste polyethylene terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete”. J. Clean. Prod., 112: 2363-2373.
Said-Mansour, M., Kadri, E., Kenai, S., Ghrici, M. and Bennaceur, R. 2011. “Influence of calcined kaolin on mortar properties”. Constr. Build. Mater., 25(5): 2275-2282. https://doi.org/10.1016/j.conbuildmat. 2010.11.017.
Saikia, N. and De Brito, J. 2012. “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review”. Constr. Build. Mater., 34: 385-401. https://doi.org/10.1016/j.conbuildmat. 2012.02.066.
Saikia, N. and de Brito, J. 2014. “Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate”. Constr. Build. Mater., 52: 236-244.
Shah, S. P. and Rangan, B. V. 1971. “Fiber reinforced concrete properties”. In ACI J. Proc., 68: 126-137.
Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A. and Mobasher, B. 2010. “Transport properties in metakaolin blended concrete”. Constr. Build. Mater., 24(11): 2217-2223. https://doi.org/10.1016/j. conbuildmat.2010.04.035.
Siddique, R., Khatib, J. and Kaur, I. 2008. “Use of recycled plastic in concrete: A review”. Waste Manage., 28(10): 1835-1852. https://doi.org/10.1016/j.wasman.2007.09.011.
Siddique, R. and Klaus, J. 2009. “Influence of metakaolin on the properties of mortar and concrete: A review”. Appl. Clay Sci., 43(3-4): 392-400. https://doi.org/10.1016/j.clay.2008.11.007.
Tlemat, H. 2004. “Steel fibres from waste tyres to concrete: testing, modelling and design”. University of Sheffield. Retrieved from https://ethos.bl.uk/OrderDetails.do;jsessionid=B8A9968BF658C1579586 EA3836AEF8B9?uin=uk.bl.ethos.506448.
Vejmelková, E., Pavlíková, M., Keppert, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M. and Černý, R. 2010. “High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics”. Constr. Build. Mater., 24(8): 1404-1411. https://doi.org/ 10.1016/j.conbuildmat.2010.01.017.
Whitehurst, E. A. 1951. “Soniscope tests of concrete structures”. ACI J Proc. 47(6): 433-444.
Wild, S., Khatib, J. M. and Jones, A. 1996. “Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete”. Cement Concrete Res., 26(10): 1537-1544.