تخمین نسبت باربری کالیفرنیا در خاک‏های مردابی بهسازی شده با استفاده از شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد راه و ترابری، گروه عمران ،واحد دماوند، دانشگاه آزاد اسلامی ، دماوند،ایران

2 استادیار، گروه عمران،واحد دماوند، دانشگاه آزاد اسلامی ، دماوند،ایران

چکیده

امروزه، استفاده از روش اختلاط عمیق برای بهبود روسازی جاده­ها گسترش یافته است. یکی از مهمترین اهداف این روش، افزایش ضریب باربری کالیفرنیا و کاهش نشست روسازی می‏باشد. درسال‏هایاخیر،مدل‏سازیبه وسیلههوش محاسباتی،جایگاه ویژه­ایدرمهندسی عمرانپیداکردهاستو تخمینرفتار و فرایند مقاوم­سازی،کهباپیچیدگی­هایفراوانیروبروبوده،تاحدودیبهکمکاینروش­ها میسر شدهاست.هدف اصلی این تحقیق، ساخت یک مدل محاسباتی جهت تخمین ضریب باربری کالیفرنیا در خاک‏های مردابی می‏باشد. بدین منظور، ابتدا این نوع خاک با درصدهای مختلفی از سیمان و ماسه خوب دانه­بندی شده و بر مبنای استانداردهای معتبر، مقاوم­سازی شده و آزمایش­هایی نظیر مقاومت فشاری تک­محوره و باربری کالیفرنیا روی نمونه­های مقاوم­سازی شده انجام شد.پس از انجام تست­های آزمایشگاهی، یک مجموعه از اطلاعات برای ساخت مدل هوش محاسباتی جمع­آوری شد. در این تحقیق، از مدل پرسپترون چندلایه با معماری­های مختلف شامل یک و دو لایه مخفی با تعداد نرون­های متفاوت برای تخمین استفاده شد.برای این هدف، پارامترهای ورودی به مدل شامل مقاومت فشاری تک­محوره، زمان عمل­آوری و میزان ماسه در نظر گرفته شدند و آنالیز حساسیت با الگوریتم گارسون انجام شد.نتایج آزمایشگاهی نشان داد که افزایش میزان ماسه به عنوان یک پُرکننده طبیعی، تأثیر قابل ملاحظه‌ای در افزایش باربری کالیفرنیا دارد. به عنوان مثال، در میزان سیمان ثابت 400 کیلوگرم بر متر مکعب،افزایش میزان ماسه به اندازه 200 کیلوگرم بر متر مکعب، ضریب باربری کالیفرنیا را از 31% به 59% افزایش داد. همچنین، نتایج مدل­سازی به‏دست آمده نشان داد که بهترین مدل با متوسط مربعات خطای 41/0 و متوسط ضریب رگرسیون 99/0 بهترین عملکرد را در تخمین ضریب باربری کالیفرنیا داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of California Bearing Ratio of Improved Peat Soils by Artificial Neural Networks

نویسندگان [English]

  • Maryam Sherafati Soha 1
  • Ali Dehghanbanadaki 2
  • Mahdy Khari 2
1 Master of Road and Transportation, Dept. of Civil Engineering, Damavand Branch, Islamic Azad University, Damavand, Iran
2 Assistant Professor, Dept. of Civil Engineering, Damavand Branch, Islamic Azad University, Damavand, Iran
چکیده [English]

Nowadays, the use of deep soil mixing method has expanded to improve road pavement. One of the most important goals of this approach is to increase the California Bearing Factor and reduce the pavement settlement. In recent years, modeling by computational intelligence has found a special place in civil engineering, and partly due to the use of these methods, the behavior and process of stabilization, which has been encountered with many problems, is possible. The main objective of this research is to develop a computational model for estimating the California Bearing Factor for peat soils. For this purpose, firstly, this soil was mixed with various percentages of cement and well-graded sand based on validated standards, and experimental tests such as single-axial compressive strength and California bearing were performed on the stabilized specimens. After laboratory testing, a set of information was compiled to construct the computing intelligence model. In this research, the multi-layer (MLP) with different architectures including one and two hidden layers with different number of neurons were used for estimation. For this purpose, input parameters of uniaxial compressive strength, curing time and the amount of sand were considered and the sensitivity analysis was carried out using the Garson algorithm. The experimental results of this study showed that by increasing the amount of sand as a natural filler a significant effect on California's bearing ratio was observed. For example, in a constant amount of cement of 400 kg/m3, adding 200 kg/m3 sand, increased the CBR from 31% to 59%. Also, the results showed that the best model with an average mean square error of 0.41 and an average regression coefficient of 0.99 showed the best performance in estimation of the California Bearing Factor.

کلیدواژه‌ها [English]

  • Deep soil mixing
  • Multi-layer perceptron
  • California bearing ratio
بیل، آر. و جکسون، تی. 1380. " آشنایی با شبکه‌های عصبی".  ترجمه دکتر محمود البرزی، مؤسسه انتشارات علمی دانشگاه صنعتی شریف.
منهاج، م. ب. 1379. " مبانی شبکه‏های عصبی". جلد اول ، مرکز نشر دانشگاه صنعتی امیرکبیر.
AASHO. 1947. “Standard specifications for highway materials”. Test T-193, Washington, D.C.
Aladag, C. H., Kayabasi, A. and Gokceoglu, C. 2013. “Estimation of pressure meter modulus and limit pressure of clayey soils by various artificial neural network models”. Neural Comput. Appl., 23(2): 333-339.
Basma, A. A. and Kallas, N. 2004. “Modeling soil collapse by artificial neural networks”. Geotech. Geolog.Eng., 22(3): 427-438.
Bhatt, S., Jain, P. K. and Pradesh, M. 2014. “Prediction of California bearing ratio of soils using artificial neural network”. Am. Int. J. Res. Sci., Technol., Eng. Math., 8(2); 156-161.           
British Standard Institution. 1990. “Methods of test for soils for civil engineering purposes”. London.
Dehghanbanadaki, A., Ahmad, K. and Ali, N. 2013. “Influence of natural fillers on shear strength of cement treated peat”. Gradevinar, 65(7): 633-640.
Dehghanbanadaki, A., Khari, M., Arefnia, A., Ahmad, K. and Motamedi, S. 2019. “A study on UCS of stabilized peat with natural filler: A computational estimation approach”. KSCE J. Civ. Eng., 23(4): 1560-1572.
EuroSoilStab. 2002. “Development of design and construction methods to stabilize soft organic soils”. Design guide soft soil stabilization, industrial and materials technologies programme (Brite- EuRam III), European Commission, CT97-0351, Project No. BE 96-3177, pp. 15-60.
Fatih, I. and Gurkan, O. 2012. “Estimating compaction parameters of fine- and coarse-grained soils by means of artificial neural networks”. Environ. Earth Sci., 69(7): 2287-2297.
Garson, G. D. 1991. “Interpreting neural-network connection weights”. Artif. Intell. Expert, 6(7): 47-51.
Ghorbani, A. and Hasanzadehshooiili, H. 2018. “Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing”. Soils Found., 58(1): 34-49.
Gunaydin, O., Gokoglu, A. and Fener, M. 2010. “Prediction of artificial soil’s unconfined compression strength test using statistical analyses and artificial neural networks”. Adv. Eng. Software, 41(9): 1115-1123.
Hasanipanah, M., Bakhshandeh Amnieh, H., Khamesi, H., Jahed Armaghani, D., Golzar, S. B. and Shahnazar, A. 2018. “Prediction of an environmental issue of mine blasting: An imperialistic competitive algorithm-based fuzzy system”. Int. J. Environ. Sci. Technol., 15(3): 551-560.
Huat, B. B. K. 2002. “Some mechanical properties of tropical peat and organic soil”. 2nd World Engineering Congress, Sarawak, pp. 82-87.
Islam, M. D. and Hashim, R. 2010. Stabilization of peat soil by soil-column technique and settlement of group columns”. Int. J. Phys. Sci. 5(9): 1411-1418.
Kazemian, S., Prasad, A., Huat, B. B. K., Bolouri Bazaz, J., Mohammed, T. A. and Abdul Aziz, F. N. 2011. “Effect of aggressive pH media on peat treated by cement and sodium silicate grout”. J. Central South Univ., 18: 840-847.
Kogure, K., Yamaguchi, H. and Shogari, T. 2003. “Physical and pore properties of fibrous peat deposit”. Proc. 11th Southeast Asian Geotechnical Conferences, Singapore.
Mahdiyar, A., Jahed Armaghani, D., Marto, A., Nilashi, M. and Ismail, S. 2018. “Rock tensile strength prediction using empirical and soft computing approaches”. Bull. Eng. Geol. Environ., 78: 4519-4531.
Maroufpoor, E., Sanikhani, H., Emamgholizadeh, S. and Kişi, O. 2017. “Estimation of wind drift and evaporation losses from sprinkler irrigation systems by different data-driven methods”. Irrig. Drain., 67(2): 222-232.
Pooya Nejad, F. and Jaksa, M. B. 2017. “Load-settlement behavior modeling of single piles using artificial neural networks and CPT data”. Comput. Geotech., 89: 9-21.
Sabat, A. K. 2013. “Prediction of California bearing ratio of a soil stabilized with lime and quarry dust using artificial neural network”. Electron. J. Geotech. Eng., 18: 3261-3272.
Shaik, S., Krishna, K. S. R., Abbas, M., Ahmed, M. and Mavaluru, D. 2018. “Applying several soft computing techniques for prediction of bearing capacity of driven piles”. Eng. Comput., 35: 1463-1474.
Shamshirband, S., Tavakkoli, A., Roy, C. B., Motamedi, S., Song, K. I., Hashim, R. and Islam, S. M. 2015. “Hybrid intelligent model for approximating unconfined compressive strength of cement-based bricks with odd-valued array of peat content (0–29%)”. Powder Technol., 284: 560-570.
Sinha, S. K. and Wang, M. C. 2008. “Artificial neural network prediction models for soil compaction and permeability’’ Geotech. Eng. J., 26(1): 47-64.
Taha, S., Gabr, A. and El-Badawy, S. 2019. “Regression and neural network models for California bearing ratio prediction of typical granular materials in Egypt”. Arab. J. Sci. Eng., 44: 8691-8705.
Tarawneh, B. 2016. “Predicting standard penetration test N-value from cone penetration test data using artificial neural networks”. Geosci. Frontiers, 8(1): 199-204.
Von Post, L. 1922. “Geological survey of Sweden peat inventory and some of its hitherto missing data”. Tidskr, 1: 1-27.
Yeganeh-Bakhtiary, A., Houshangi, H., Hajivalie, F. and Abolfathi, S. 2017. “A numerical study on hydrodynamics of standing waves in front of caisson breakwaters with WCSPH model”. Coast. Eng. J., 59(1): 1750005-1-1750005-31.