مکان‌یابی آسیب در پل در حضور پروفیل سطح جاده با استفاده از اندازه‌گیری ارتعاشات وسیله نقلیه عبوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

مکان‌یابی مستقیم آسیب در پل مستلزم به‏کارگیری تعداد زیادی حسگر ارتعاشی روی سازه است که این امر معمولاً پُرهزینه‌ و زمان‌بر می‌باشد. در برهم‌کنش وسیله نقلیه– پل، پاسخ ارتعاشی وسیله نقلیه عبوریشامل پاسخ ارتعاشی پل نیز می‌باشد که می‌توان از آن برای استخراج پارامترهای مودال پل بهره برد. در این مقاله، به منظورمکان‌یابیغیرمستقیم آسیب در پل از نسبت انتقال‌پذیری پاسخ وسیله نقلیه استفاده شده است. با نصب شتاب‌سنج روی محور وسیله نقلیه، اندازه‌گیری شتاب در حین حرکت صورت می‌گیرد و نیازی به توقف وسیله نقلیه روی پل ندارد. در اغلب روش‌ها، فرض بر این است که نیروی تحریک به صورت نویز سفید باشد. اما در این روش، خصوصیات نیروی تحریک در نظر گرفته نمی‌شود، که این مورد از دیگر مزایای روش می‌باشد. از آنجا که وجود پروفیل سطح جاده باعث می‌شود شناسایی پارامترهای مودال دشوار گردد، در این مقاله از تفاضل سیگنال شتاب از دو محور مشابه برای حذف اثر پروفیل سطح استفاده شده است. در شبیه‌سازی عددی به روش المان محدود، پل با حضور پروفیل سطح و سه وسیله نقلیه به صورت سیستم‌های دو درجه آزادی جرم- فنر- دمپر مدل شده‌اند. با حل هم‌زمان مدل پل- وسیله نقلیه و سپس حذف اثر پروفیل سطح، شناسایی شکل مود پل میسر می‌گردد. سپس، مسأله برهم‌کنش پل- وسیله نقلیه با درنظر گرفتن آسیب در پل، مجدداً حل شده و مکان‌یابی آسیب با استفاده از شاخص تغییر انحنای شکل مود مورد بررسی قرار گرفته است. نتایج شبیه‌سازی عددی دلالت بر توانایی روش پیشنهادی در حضور نویز اندازه‌گیری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Damage Localization of Bridge in the Presence of Road Profile using Vibration Measurement of the Passing Vehicle

نویسندگان [English]

  • Seyed Maziar Marashi 1
  • Mohammad Hadi Pashaei 2
  • Mohammad Mahdi Khatibi 3
1 PhD Candidate, Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran
2 Associate Professor, Faculty of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran
3 Assistant Professor, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
چکیده [English]

Direct damage localization of bridge involves the use of a large number of vibration sensors on the structure, which is often costly and time-consuming. Through vehicle bridge interaction, dynamic response of a passing vehicle includes the bridge response which may be used for extracting bridge modal parameters. In this paper, transmissibility measurement of the vehicle response is dedicated to localize indirectly the bridge damage. As the sensor is embedded on the axle of the vehicle, recording the signal is fulfilled during the vehicle passage and there is no need to stop the vehicle. There is white noise assumption in most other techniques. But excitation characteristics are not considered in this method; which is another advantage. Since the road profile may cause modal parameter identification to be difficult, subtracting the acceleration signals from two identical axles is used here in order to remove the influence of road profile. In the numerical simulation by finite element method, the bridge model is accompanied by road profile and three vehicles are assumed to be 2DOF systems of mass-spring-damper. By solving the vehicle-bridge interaction equations simultaneously and then removing the effect of road profile, the estimation of bridge mode shape would be possible. Then, by considering bridge damage, the vehicle-bridge interaction equations are solved once more and the damage localization is fulfilled using the changes in the mode shape curvature. Results of numerical simulations indicated the capability of the proposed method in the presence of measured noise.

کلیدواژه‌ها [English]

  • Bridge health monitoring
  • Damage localization
  • Transmissibility
  • Mode shape curvature
  • Road profile
 
Araújo, I. G. and Laier, J. E. 2014. “Operational modal analysis using SVD of power spectral density transmissibility matricesc”. Mech. Syst. Signal Pr., 46(1): 129-145.
Davis, S. L., Goldberg, D., DeGood, K., Donohue, N. and Corless, J. 2013. “The fix we're in for: The state of our nation's bridges 2013”. Transportation for America.
Fan, W. and Qiao, P. 2009. “A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures”. Int. J. Solids Struct., 46(25): 4379-4395.
Fan, W. and Qiao, P. 2011. “Vibration-based damage identification methods: A review and comparative study”. Struct. Health Monit., 10(1): 83-111.
Farrar, C. and James III, G. 1997. “System identification from ambient vibration measurements on a bridge”. J. Sound Vib., 205(1): 1-18.
Fujino, Y. and Siringoringo, D. 2011. “Bridge monitoring in Japan: the needs and strategies”. Struct. Infrastruct. Eng., 7(7-8): 597-611.
Hadjileontiadis, L., Douka, E. and Trochidis, A. 2005. “Fractal dimension analysis for crack identification in beam structures”. Mech. Syst. Signal Pr., 19(3): 659-674.
He, W. Y., He, J. and Ren, W. X. 2018. “Damage localization of beam structures using mode shape extracted from moving vehicle response”. Measurement, 121: 276-285.
He, W. Y., Ren, W. X. and Zuo, X. H. 2018. “Mass-normalized mode shape identification method for bridge structures using parking vehicle-induced frequency change”. Struct. Control Health Monit., 25(6): e2174.
Keenahan, J., OBrien, E. J., McGetrick, P. J. and Gonzalez, A. 2013. “The use of a dynamic truck-trailer drive-by system to monitor bridge damping”. Struct. Health Monit., 13(2): 143-157.
Kong, X., Cai, C. and Kong, B. 2014. “Damage detection based on transmissibility of a vehicle and bridge coupled system”. J. Eng. Mech., 141(1): 04014102.
Li, H., He, C., Ji, J., Wang, H. and Hao, C. 2005. “Crack damage detection in beam-like structures using RBF neural networks with experimental validation”. Int. J. Innov. Comput. Inform. Control, 1(4): 625-634.
Lin, C. and Yang, Y. 2005. “Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification”. Eng. Struct., 27(13): 1865-1878.
Malekjafarian, A. and OBrien, E. 2014a. “Application  of  output-only  modal  method  to  the  monitoring  of  bridges  using  an  instrumented  vehicle”. Proc. of the Civil Engineering Research in Ireland Conference, Belfast, Northern Ireland.
Malekjafarian, A. and OBrien, E. 2014b. “Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle”. Eng. Struct., 81: 386-397.
Malekjafarian, A. and OBrien, E. J. 2017. “On the use of a passing vehicle for the estimation of bridge mode shapes”. J. Sound Vib., 397: 77-91.
Oshima, Y., Yamamoto, K. and Sugiura, K. 2014. “Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles”. Smart Struct. Syst., 13(5): 731-753.
Pakrashi, V., O'Brien, E. and O'Connor, A. 2011. “A review of road structure data in six European countries”. Proc. ICE-Urban Design Plann., 164(4): 225-232.
Pandey, A., Biswas, M. and Samman, M. 1991. “Damage detection from changes in curvature mode shapes”. J. Sound Vib., 145(2): 321-332.
Seo, J., Hu, J. W. and Lee, J. 2015. “Summary review of structural health monitoring applications for highway bridges”. J. Perform. Constr. Fac., 30(4): 04015072.
Shi, Z., Law, S. and Zhang, L. 2000. “Damage localization by directly using incomplete mode shapes”. J. Eng. Mech., 126(6): 656-660.
Sinha, J. K., Friswell, M. and Edwards, S. 2002. “Simplified models for the location of cracks in beam structures using measured vibration data”. J. Sound Vib., 251(1): 13-38.
Standardization, I. O. F., ISO/TC, T. C., Vibration, M., Measurement, S. S. S., Vibration, E. O. M. and Machines, S. A. A. T. 1995. “Mechanical vibration-road surface profiles-reporting of measured data Application  of  output-only  modal  method  to  the  monitoring”. International Organization for Standardization.
Tedesco, J. W., McDougal, W. G. and Ross, C. A. 1999. “Structural dynamics: Theory and applications”. Addison-Wesley, Menlo Park, CA.
Wang, L. and Chan, T. 2009. “Review of vibration-based damage detection and condition assessment of bridge structures using structural health monitoring”. Proceedings of The Second Infrastructure Theme Postgraduate Conference: Rethinking Sustainable Development- Planning, Infrastructure Engineering, Design and Managing Urban Infrastructure. Queensland University of Technology, Australia, pp. 35-47.
Yang, Y. B., Chen, W. F., Yu, H. W. and Chan, C. 2013. “Experimental study of a hand-drawn cart for measuring the bridge frequencies”. Eng. Struct., 57: 222-231.
Yang, Y. B., Lin, C. and Yau, J. 2004. “Extracting bridge frequencies from the dynamic response of a passing vehicle”. J. Sound Vib., 272(3): 471-493.
Yang, Y. and Chang, K. 2009. “Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study”. Eng. Struct., 31(10): 2448-2459.
Yang, Y., Lee, Y. and Chang, K. 2014. “Effect of road surface roughness on extraction of bridge frequencies by moving vehicle”. PP. 295-305. In: Mechanics and Model-Based Control of Advanced Engineering Systems, Springer.
Yang, Y., Li, Y. and Chang, K. 2012a. “Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies”. Interact. Multiscale Mech., 5(4): 347-368.
Yang, Y., Li, Y. and Chang, K. 2012b. “Using two connected vehicles to measure the frequencies of bridges with rough surface: A theoretical study”. Acta Mech., 223(8): 1851-1861.
Yang, Y., Li, Y. and Chang, K. 2014. “Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study”. Smart Struct. Syst., 13(5): 797-819.
Yang, Y. and Yang, J. P. 2018. “State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles”. Int. J. Struct. Stab. Dyn., 18(02): 1850025.
Zhang, Y., Wang, L. and Xiang, Z. 2012. “Damage detection by mode shape squares extracted from a passing vehicle”. J. Sound Vib., 331(2): 291-307.
Zhu, X. and Law, S. 2006. “Wavelet-based crack identification of bridge beam from operational deflection time history”. Int. J. Solids Struct., 43(7): 2299-2317.