بررسی آزمایشگاهی اثر اضافه کردن افزودنی های مختلف بر ویژگی های بتن متخلخل قابل کاربرد در سیستم رواناب شهری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه سمنان

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان

3 استادیار، دانشکده مهندسی عمران، دانشگاه سمنان

4 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

در دهه اخیر، کاربرد بتن متخلخل برای پوشش کف پیاده­روها و روسازی جاده­ها به عنوان رابطی برای جمع­آوری رواناب­های شهری مورد توجه قرار گرفته است. بتن متخلخل از نظر قابلیت نفوذپذیری و قدرت انتقال آب حائز اهمیت می­باشد. در این پژوهش، در طرح اختلاط اولیه بتن متخلخل معمولی، مقدار سنگدانه و سیمان به ترتیب 1400 و 330 کیلوگرم بر متر مکعب و نسبت آب به سیمان بین 35/0 تا 45/0 بود. در طرح اختلاط بتن متخلخل با افزودنی، افزودنی­هایی که استفاده شدند عبارت بودند از: زئولیت، پرلیت، پوکه معدنی و پوکه صنعتی (لیکا)، به همراه سیمان تیپ 2 و تیپ 5. ویژگی­های مقاومت فشاری و ضریب نفوذپذیری (هدایت هیدرولیکی) مورد مطالعه قرار گرفت. نتایج نشان می­دهد که اضافه شدن افزودنی­ها، مقاومت بتن متخلخل را کاهش می­دهد. به طوری که این کاهش مقاومت برای افزودنی­های زئولیت، پرلیت، پوکه معدنی و پوکه صنعتی بین بیشترین و کمترین درصد افزودنی به ترتیب برابر 13، 4/48، 1/10 و 6/12 درصد می­باشد. ضریب نفوذپذیری در اکثر تیمارهای افزودنی، بجز پرلیت، نسبت به شاهد افزایش یافت. بیشترین افزایش ضریب نفوذپذیری (3/7­ درصد) در تیمار افزودنی حاوی 5% پوکه معدنی و بیشترین کاهش ضریب نفوذپذیری (7/3 درصد) در تیمار افزودنی 10% پرلیت بوده است. در مجموع، در بین افزودنی­های استفاده شده، تیمار با 10% حجمی پرلیت، بیشترین میانگین مقاومت (95/11 مگاپاسکال) و تیمار با 10% حجمی پوکه صنعتی، کمترین میانگین مقاومت (2/3 مگاپاسکال) را دارا می­باشد، که نشان می­دهد اضافه کردن پوکه صنعتی نسبت به سایر افزودنی­ها با کاهش مقاومت بیشتری همراه بوده است. افزودنی پرلیت در رده­ی بعدی قرار می­گیرد

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation of the Effect of Different Additives on Characteristics of Porous Concrete, Applicable in Urban Runoff System

نویسندگان [English]

  • Ehsan Teymouri 1
  • Sayed-Farhad Mousavi 2
  • Hojat Karami 3
  • Saeed Farzin 3
  • Mohsen Javaheri-Tehrani 4
1 MSc. Student
2 Professor- Semnan University
3 Assistant professor
4 PhD Student- Semnan University
چکیده [English]

In the last decade, porous (pervious) concrete has been used in sidewalks and surface pavements for collection of urban runoff water. Porous concrete is highly considered for its hydrailuc conductivity and water transport capacity. In the present research, the original porous concrete was made of 1400 kg/m3 aggregates and 330 kg/m3 Portland cement, along with water to cement ratio (W/C) of 0.35-0.45. In the mixture of porous concrete and additive, the following additives were used: zeolite, perlite, pumice and clay aggregate, with type 2 and type 5 Portland cement. Compressive strength and permeability coefficient (hydraulic conductivity) were studied. Results revealed that adding additives decreases compressive strength of the porous concrete. This reduction in compressive strength for the highest and least amount of zeolite, perlite, pumice and clay aggregate was 13, 48.4, 10.1 and 12.6 percent, respectively. Hydraulic conductivity increased in most of the treatments, except perlite. The highest increase in hudraulic condictivity (7.3 %) occurred in the treatment containing 5% pumice and the highest reduction in hydraulic conductivity (3.7 %) occurred in the treatment containing 10% perlite. In general, among the different additives used in this experiment, the treatment containing 10% perlite had the highest compression strength (11.95 MPa) and the treatment containing 10% clay aggregate had the lowest compression strength (3.2 MPa). This shows that adding clay aggregate reduces compression strength of porous concrete more than other additives. The perlite additive ranks next.

کلیدواژه‌ها [English]

  • Permeability of porous concrete
  • Compression strength
  • Hydraulic conductivity
  • Perlite
  • Pumice
ترکیان، ا. و احمدی، م. 1385. بیوتکنولوژی زیست­محیطی: مبانی و کاربردها (ترجمه)، مؤسسه انتشارات علمی راز دانشگاه صنعتی شریف، تهران.

جوانی، ح. ر. 1392. بررسی میزان کاهش آلاینده­های موجود در فاضلاب تصفیه شده در سامانه تغذیه مصنوعی. پایان­نامه کارشناسی ارشد، مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

حسامی، س. و احمدی، س. 1394. ارزیابی روسازی بتنی متخلخل سازگار با محیط­زیست با استفاده از خاکستر پوسته برنج. مهندسی زیرساخت­های حمل و نقل، 1(2): 63-76.

سقائیان نژاد، س. 1391. کاهش بار آلودگی رواناب­های شهری با استفاده از بتن متخلخل جاذب. پایان­نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.

شرکت پرلیت تابنده طوس (www.Perlite.ir).

عابدی کوپایی، ج. و جواهری طهرانی، م. 1392. معرفی استفاده از بتن متخلخل جهت فراهم نمودن آب شرب در شرایط اضطراری. مجموعه مقالات اولین همایش ملی بحران آب، دانشگاه آزاد اسلامی واحد خوراسگان (اصفهان)، 25-26 اردیبهشت ماه.

عابدی کوپایی، ج. و موسوی، س. ف. 1382. جذب سرب از پساب صنعتی توسط خاکستر پوسته شلتوک. آب و فاضلاب، 48: 17-23.

مستأجران، ا.، یحیی آبادی، س. و امتیازی، گ. 1385. کاهش آلودگی پساب صنعتی توسط جلبک سبز و جلبک­های سبز- آبی. آب و فاضلاب، 57: 37-47.

نادری، م. و بنیادی، ع. 1391. مقایسه طرح اختلاط و مقاومت فشاری بتن­های سبک ساخته شده با سبک­دانه­های لیکا، اسکریا و پرلیت با استفاده از روش پیچش. نشریه مهندسی عمران، 2: 71-90.

ACI Committee 211. 2006. “Guide for Selecting Proportions for No-slump Concrete”. ACI 211.3R Report. ACI Committee 522. 2006. “Pervious Concrete”. ACI 522R-06 Report.

Ardali, Y., Turan, N. G. and Temel, F. A. 2014. “Cu (II) removal from industrial waste leachate by adsorption using expanded perlite”. J. Nat. Appl. Sci., 19(1-2): 54-61.

ASTM C39. 2004. “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”. Annual Book of ASTM Standards.

Fergouson, B. K. 2005. “Porous Pavement”. Tailor and Francis Group.

Choi, I. S., Jang, S. H. and Oh, J. M. 2010. “Examination for purification ability of water quality by applying the porous concrete”. Korean J. Limnol., 35(4): 312-319.

Demirbas, A. 2008. “Heavy metal removal adsorption into agro-based materials”. J. Hazard. Mater., 157: 220-229.

Dierkes, C., Gobel, P., Lohmann, M. and Coldewey, W. G. 2006. “Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas”. Water Sci. Technol., 54(6-7): 291-298.

Harrisburg, P. A. 1998. “The Pennsylvania Handbook of Best  Management Practices for Developing Areas”. Pennsylvania Association of Conservation Districts, Pennsylvania Deparment of Environmental Protection.

Hatt, B. E., Siriwardene, N., Deletic, A. and Fletcer, T. D. 2006. “Filter media for stormwater treatment and recycling: The influence of hydraulic properties of flow on pollutant removal”. Water Sci. Technol., 54(6-7): 263-271.

Kozeliski, F. A. 1992. “Permeable bases help solve pavement drainage problems”. The Aberdeen Group, Publication #C920660, 2 p.

Meininger, R. C. 1998. “No-fines pervious concrete for paving”. Concrete Int. pp. 20-27.

Mousavi, S. F., Moazzeni, M., Mostafazadeh-Fard, B. and Yazdani, M. R. 2012. “Effects of rice straw incorporation on some physical characteristics of paddy soils”. J. Agric. Sci. Technol., 14: 1173-1183.

Paliulis, D. 2016. “Removal of formaldehyde from synthetic wastewater using natural and modified zeolites”. Pol. J. Environ. Stud., 1: 251-257.

Pasha, T. N., Farooq, M. U., Khattak, F. M., Jabbar, M. A. and Khan, A. D. 2007. “Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens”. Animal Feed Sci. Technol., 132: 103-110.

Rostamian, R., Heidarpour, M., Mousavi, S. F. and Afyuni, M. 2015. “Preparation, characterization and sodium sorption capability of rice husk carbonaceous adsorbents”. Fresenius Environ. Bull., 24(5): 1649-1658.

ّStrain, V. and Pant, K. K. 2005. “Removal of chromium from industrial waste by using eucalyptus bark”. Bioresour. Technol., 97: 15-20.

Taghizadeh, M. M., Torabian, A., Borghei, M. and Hassani, A. H. 2007. “Feasibility study of water purification using vertical porous concrete filter”. Int. J. Environ. Sci. Tech., 4(4): 505-512.

Tennis, P.D., Leming, M. L. and Akers, D. J. 2004. “Pervious Concrete Pavements”. Portland Cement Association (PCA), Skokie, Illinois, 25 p.