بررسی مشخصات شیمیایی و ضد پیر شدگی قیرهای اصلاح شده با لیگنین و روغن موتور ضایعاتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی عمران، دانشگاه خواجه نصیرالدین طوسی، تهران

2 دانش‌آموخته کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه خواجه نصیرالدین طوسی، تهران

چکیده

یکی از اصلی‌ترین عواملی که باعث ایجاد ترک در روسازی آسفالتی و اضمحلال آن در گذر زمان می‌شود، پدیده پیرشدگی است. مطالعات نشان داده که استفاده از آسفالت‌های زیستی (بیوآسفالت) تأثیر مثبتی بر پدیده پیرشدگی می‌گذارد و می‌تواند به عنوان یک ماده آنتی­اکسیدان و جوان‌ساز عمل کند. در این پژوهش، امکان استفاده از لیگنین و روغن موتور ضایعاتی در قیر جهت بهبود خواص شیمیایی و روان‌کنندگی قیر بررسی شد. هر دوی این مواد جزو بیوآسفالت هستند. لیگنین به­کار رفته در پژوهش از لیکور سیاه استخراج گردید. روغن موتور ضایعاتی نیز از یک تعمیرگاه خودرو گرفته شد. نمونه‌های مورد آزمایش شامل قیر خالص PG64-22، نمونه‌های حاوی 5 و 10 درصد لیگنین، نمونه‌های حاوی 4% روغن موتور ضایعاتی و همینطور نمونه‌های دارای هر دو افزودنی لیگنین و روغن موتور ضایعاتی هستند. برای بررسی بهتر تأثیر افزودنی‌ها در شیمی قیر و پیرشدگی آن، آزمایش‌های FTIR، آنالیز SEM، آنالیز ICP و آنالیز CHNS روی نمونه‌ها انجام گرفت. همچنین،، سه شاخص مهم پیرشدگی که با استفاده از آزمون‌های RV، DSR و FTIR به­دست می‌آید، محاسبه گردید. نتایج شاخص‌های پیرشدگی نشان داد که افزودن لیگنین تا 27% باعث کاهش شاخص VAI و 36% کاهش شاخص RAI می‌شود. از طرف دیگر، افزودن روغن اثری عکس دارد. همچنین،، افزودن هر دو ماده به صورت همزمان باعث کاهش شاخص‌های پیرشدگی و بهبود عملکرد نمونه‌ها در برابر پیرشدگی می‌شود. علاوه بر آن، آنالیزهای ICP و CHNS نشان دادند که استفاده از روغن موتور سوخته و لیگنین در قیر می‌تواند از نظر زیست­محیطی مفید واقع شود، چرا که تا 14% جایگزین قیر می‌شود و از مواد ضایعاتی در روسازی استفاده می‌کند. آنالیز SEM نشان داد که اختلاط لیگنین و روغن در قیر به صورت یکنواخت و همگن انجام می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Ageing Properties of Asphalt Binders Modified with Lignin and Waste Engine Oil

نویسندگان [English]

  • Mansour Fakhri 1
  • Mohammad Amin Norouzi 2
1 Department of Civil Engineering, K.N.Toosi University of Technology, Tehran 1996715433, Iran
2 Road and transportation department, Khaje Nasir University, Tehran, Iran
چکیده [English]

One of the main factors that cause distresses and cracks in asphalt pavement is ageing and it makes pavements deteriote over time. Previous studies about this phenomenon have shown that the use of "bioasphalt" has a positive effect on the ageing and it can act as an antioxidant and rejuvenating material. In this study, the possibility of using lignin and waste engine oil in bitumen to improve the chemical and ageing properties of bitumen was investigated. The lignin used in the study was extracted from black liquor. Waste engine oil was taken from a car repair shop. The samples are PG64-22 as control sample, samples containing 5 and 10% lignin, samples containing 4% waste engine oil, and samples containing both additives. FTIR analysis, ICP analysis, CHNS analysis and SEM analysis were performed on the samples to better investigate the effect of additives on aging. Also, three important aging indices were calculated using RV, DSR and FTIR tests. The results showed that the addition of lignin or WEO or a combination of both, can improve the chemical properties of bitumen. Also using waste materials in bitumen can be useful from an environmental and economic point of view. They are also effective for aging resistance and can be used as a rejuvenator.

کلیدواژه‌ها [English]

  • Lignin
  • Waste Engine Oil
  • Ageing
  • Rejuvenator
Airey, G. D. 2003. “State of the art report on ageing test methods for bituminous pavement materials”. Int. J. Pavement Eng., 4(3): 165-176. doi:10.1080/1029843042000198568
Arafat, S., Kumar, N., Wasiuddin, N. M., Owhe, E. O. and Lynam, J. G. 2019. “Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties”. J. Clean. Prod., 217: 456-468. https://doi.org/10.1016/j.jclepro.2019.01.238
Ashouri Taziani, E., Toraldo, E., Crispino, M. and Giustozzi, F. 2017. “Application of rejuvenators and virgin bitumen to restore physical and rheological properties of RAP binder”. Austral. J. Civ. Eng., 15(2): 73-79. doi:10.1080/14488353.2017.1383580
Asukar, S., Behl, A. and Gundaliya, P. 2016. “Utilization of lignin as an antioxidant in asphalt binder”. Int. J. Innov. Res. Technol., 2: 198-207.
Batista, K. B., Padilha, R. P. L., Castro, T. O., Silva, C. F. S. C., Araújo, M. F. A. S., Leite, L. F. M., . . . and Lins, V. F. C. 2018. “High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders”. Industrial Crops Products, 111: 107-116. doi:10.1016/j.indcrop. 2017.10.010
Boeriu, C. G., Bravo, D., Gosselink, R. J. and van Dam, J. E. 2004. “Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy”. Industrial Crops Products, 20(2): 205-218.
CFR, E. Part 261. 2012. “Identification and listing of hazardous waste”. Title 40- Protection of Environment, Code of Federal Regulations.
Crucho, J., Picado-Santos, L., Neves, J. and Capitão, S. 2019. “A review of nanomaterials’ effect on mechanical performance and aging of asphalt mixtures”. Appl. Sci., 9(18). doi:10.3390/app9183657
DeDene, C. D. 2011. “Investigation of using waste engine oil blended with reclaimed asphalt materials to improve pavement recyclability”. Master's Thesis, Michigan Technological University.
Dedene, C. D. and You, Z. 2014. “The performance of aged asphalt materials rejuvenated with waste engine oil”. Int. J. Pavement Res. Technol., 7: 145-152. doi:10.6135/ijprt.org.tw/2014.7(2).145
Dizhbite, T., Telysheva, G., Jurkjane, V. and Viesturs, U. 2004. “Characterization of the radical scavenging activity of lignins- natural antioxidants”. Bioresour. Technol., 95(3): 309-317.
Fernandes, S., Silva, H. M. and Oliveira, J. R. 2019. “Mechanical, surface and environmental evaluation of stone mastic asphalt mixtures with advanced asphalt binders using waste materials”. Road Mater. Pavement Design, 20(2): 316-333.
Fini, E. H., Buabeng, F. S., Abu-Lebdeh, T. and Awadallah, F. 2015. “Effect of introduction of furfural on asphalt binder ageing characteristics”. Road Mater. Pavement Design, 17(3): 638-657. doi:10.1080/14680629.2015.1108219
Fini, E., Hosseinnezhad, S., Oldham, D., Chailleux, E. and Gaudefroy, V. 2016. “Source dependency of rheological and surface characteristics of bio-modified asphalts”. Road Mater. Pavement Design, 18: 408-424. doi:10.1080/14680629.2016.1163281
Gao, J., Wang, H., Liu, C., Ge, D., You, Z. and Yu, M. 2020. “High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder”. Constr. Build. Mater., 230: 117063.
Gong, M., Yang, J., Zhang, J., Zhu, H. and Tong, T. 2016. “Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue”. Constr. Build. Mater., 105: 35-45. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.025
Handle, F., Harir, M., Füssl, J., Koyun, A. N., Grossegger, D., Hertkorn, N., . . . and Grothe, H. 2017. “ Tracking aging of bitumen and its saturate, aromatic, resin, and asphaltene fractions using high-field Fourier transform ion cyclotron resonance mass spectrometry”. Energy Fuels, 31(5): 4771-4779. doi:10.1021/acs.energyfuels.6b03396
Hayyan, M., Hashim, M. A. and AlNashef, I. M. 2016. “Superoxide ion: Generation and chemical implications”. Chem. Rev., 116(5): 3029-3085.
Herrington, P., Dravitzki, V., Wood, C. and Patrick, J. 1993. “Waste oil distillation bottoms as bitumen extenders”. Road Transport Res., 2(4): 56-68.
Hill, B., Oldham, D., Behnia, B., Fini, E., Buttlar, W. and Reis, H. 2016. “Evaluation of low temperature viscoelastic properties and fracture behavior of bio-asphalt mixtures”. Int. J. Pavement Eng., 19(4): 362-369. doi:10.1080/10298436.2016.1175563
Hosseinnezhad, S., Fini, E. H. and Abu-Lebdeh, T. M. 2018. “Application of bio-modified montmorillonite clay to enhance asphalt oxidation resistance”. Am. J. Eng. Appl. Sci., 11(2): 433-443. doi/10.3844/ajeassp.2018.433.443
Hunter, R. N., Self, A. and Read, J. 2015. “The Shell bitumen handbook”. Sixth edition.
Karnati, S. R., Oldham, D., Fini, E. H. and Zhang, L. 2019. Surface functionalization of silica nanoparticles to enhance aging resistance of asphalt binder”. Constr. Build. Mater., 211: 1065-1072. doi:10.1016/j.conbuildmat.2019.03.257
Lamontagne, J., Dumas, P., Mouillet, V. and Kister, J. 2001. “Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens”. Fuel, 80(4): 483-488. doi:https://doi.org/10.1016/S0016-2361(00)00121-6
Le Guern, M., Chailleux, E., Farcas, F., Dreessen, S. and Mabille, I. 2010. “Physico-chemical analysis of five hard bitumens: Identification of chemical species and molecular organization before and after artificial aging”. Fuel, 89(11): 3330-3339. doi:https://doi.org/10.1016/j.fuel.2010.04.035
Li, H., Dong, B., Wang, W., Zhao, G., Guo, P. and Ma, Q. 2019. “Effect of waste engine oil and waste cooking oil on performance improvement of aged asphalt”. Appl. Sci., 9(9): 1767. doi:10.3390/app9091767
Li, X., Gibson, N., Andriescu, A. and S. Arnold, T. 2017. “Performance evaluation of reob-modified asphalt binders and mixtures”. Road Mater. Pavement Design, 18: 128-153.
Lily, D. P., Bernhard, H., Laurent, P., Xiaohu, L., Hartmut, F. and Nicole, K. 2016. Impact of temperature on short- and long-term aging of asphalt binders”. RILEM Technical Letters, 1(0). doi:10.21809/rilemtechlett.2016.4
Liu, S., Peng, A., Wu, J. and Zhou, S. B. 2018. “Waste engine oil influences on chemical and rheological properties of different asphalt binders”. Constr. Build. Mater., 191: 1210-1220. doi:10.1016/j.conbuildmat.2018.10.126
Liu, S., Peng, A., Zhou, S., Wu, J., Xuan, W. and Liu, W. 2019. “Evaluation of the ageing behaviour of waste engine oil-modified asphalt binders”. Constr. Build. Mater., 223: 394-408. doi:10.1016/j.conbuildmat.2019.07.020
Lucena, M., Soares, S. and Soares, J. 2004. “Characterization and thermal behavior of polymer-modified asphalt”. Mater. Res., 7: 529-534. doi:10.1590/S1516-14392004000400004
Mamat, R., Hainin, M. R., Hassan, N., Rahman, N., M. Warid, M. N. and Idham, M. 2015. “A review of performance asphalt mixtures using bio-binder as alternative binder”. J. Teknol., 77. doi:10.11113/jt.v77.6681
Mousavi, M., Pahlavan, F., Oldham, D., Hosseinnezhad, S. and Fini, E. H. 2016. “Multiscale investigation of oxidative aging in biomodified asphalt binder”. J. Phys. Chem. C, 120(31): 17224-17233. doi:10.1021/acs.jpcc.6b05004
Ongel, A. and Hugener, M. 2015. “Impact of rejuvenators on aging properties of bitumen”. Constr. Build. Mater., 94: 467-474. doi:10.1016/j.conbuildmat.2015.07.030
Ouyang, C., Wang, S., Zhang, Y. and Zhang, Y. 2006. “Improving the aging resistance of asphalt by addition of zinc dialkyldithiophosphate”. Fuel, 85(7): 1060-1066. https://doi.org/10.1016/j.fuel.2005.08.023
Park, H. J., Heo, H. S., Park, Y. K., Yim, J. H., Jeon, J. K., Park, J., . . . and Kim, S. S. 2010. “Clean bio-oil production from fast pyrolysis of sewage sludge: Effects of reaction conditions and metal oxide catalysts”. Bioresour. Technol., 101(1): S83-S85. https://doi.org/10.1016/j.biortech.2009.06.103
Pérez, I., Pasandín, A. R., Pais, J. C. and Pereira, P. A. 2019. “Feasibility of using a lignin-containing waste in asphalt binders”. Waste Biomass Valor., 11: 3021-3034.
Qiu, Y., Ding, H., Rahman, A. and Wang, W. 2018. “Damage characteristics of waste engine oil bottom rejuvenated asphalt binder in the non-linear range and its microstructure”. Constr. Build. Mater., 174: 202-209. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.056
Sirin, O., Paul, D. K. and Kassem, E. 2018. State of the art study on aging of asphalt mixtures and use of antioxidant additives”. Adv. Civ. Eng., 2018: 18. doi:10.1155/2018/3428961
Villanueva, A., Ho, S. and Zanzotto, L. 2008. “Asphalt modification with used lubricating oil”. Can. J. Civ. Eng., 35: 148-157. doi:10.1139/L07-092
Wan Azahar, W. N. A., Bujang, M., Jaya, R.P., Hainin, M. R., Mohamed, A., Ngadi, N. and Jayanti, D. S. 2016. “The potential of waste cooking oil as bio-asphalt for alternative binder– An overview”. J. Teknol., 78(4). doi:10.11113/jt.v78.8007
Williams, R. C. and McCready, N. S. 2008. “The utilization of agriculturally derived lignin as an antioxidant in asphalt binder”. Iowa State University, InTrans Project Reports.
Wu, S. P., Pang, L., Mo, L. T., Chen, Y. C. and Zhu, G. J. 2009. “Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen”. Constr. Build. Mater., 23(2): 1005-1010. doi:https://doi.org/10.1016/j.conbuildmat.2008.05.004
Xu, G., Wang, H. and Zhu, H. 2017. “Rheological properties and anti-aging performance of asphalt binder modified with wood lignin”. Constr. Build. Mater., 151: 801-808. doi:10.1016/j.conbuildmat.2017.06.151
You, L., You, Z., Yang, X., Ge, D. and Lv, S. 2018. “Laboratory testing of rheological behavior of water-foamed bitumen”. J. Mater. Civ. Eng., 30(8): 04018153. doi:doi:10.1061/(ASCE)MT.1943-5533.0002362
Zaidullin, I. M., Petrova, L. M., Yakubov, M. R. and Borisov, D. N. 2013. “Variation of the composition of asphaltenes in the course of bitumen aging in the presence of antioxidants”. Rus. J. Appl. Chem., 86(7): 1070-1075. doi:10.1134/S1070427213070203
Zhang, R., Wang, H., Gao, J., You, Z. and Yang, X. 2017. High temperature performance of SBS modified bio-asphalt”. Constr. Build. Mater., 144: 99-105. doi:https://doi.org/10.1016/j.conbuildmat. 2017.03.103
Zhang, R., You, Z., Wang, H., Ye, M., Yap, Y. K. and Si, C. 2019. “The impact of bio-oil as rejuvenator for aged asphalt binder”. Constr. Build. Mater., 196: 134-143. doi:10.1016/j.conbuildmat.2018.10.168