بررسی تأثیر دورپیچی به‌کمک ژئوگرید بر پارامتر‌های مقاومت برشی بالاست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی راه‌آهن، دانشگاه علم و صنعت ایران، تهران

2 دانشجوی کارشناسی ارشد خط و سازه‌های ریلی، دانشکده مهندسی راه‌آهن، دانشگاه علم و صنعت ایران، تهران

چکیده

در پژوهش حاضر، با به‏کارگیری دستگاه برش مستقیم بزرگ­مقیاس، تأثیر دورپیچی بر پارامترهای مقاومت برشی بالاست بررسی شده است. برای این منظور، از دو گروه بالاست با اندازه متوسط دانه‌ای ( ) برابر 31/41 و 55/31 میلی‌متر و همچنین سه نوع ژئوگرید دوسویه 35/35GP، 20/40GP و 20/60GP استفاده شد. آزمایش‌ها تحت تنش‌های‌ قائم 50، 100 و 150 کیلوپاسکال با نرخ برش یک میلی‌متر در دقیقه انجام شده است. نتایج آزمایش‌ها نشان میدهد که در حالت بدون دورپیچی، رفتار برشی بالاست متأثر از اندازه بیشینه قطر سنگدانه، ضریب یکنواختی و همچنین تنش قائم اعمالی است. به­گونه‌ای که با افزایش درصد مصالح درشت‌دانه و ضریب یکنواختی بالاست، مقاومت برشی آن افزایش می‌یابد. ولی با افزایش مقادیر تنش قائم از 50 به 150 کیلوپاسکال، زاویه اصطکاک داخلی بالاست‌های گروه‏های یک و چهار به‏ترتیب از 56/65 و 90/63 به 39/54 و 16/52 کاهش یافته است. به‏طور مشابه، برای دو گروه دانه‌بندی مذکور، مقدار میانگین زاویه اتساع به‏ترتیب 69/16 و 85/12 درصد کاهش یافت. از سوی دیگر، دورپیچی بالاست با ژئوگرید باعث بهبود رفتار برشی آن شده، به‏طوری که برای گروه دانه‌بندی یک، حداکثر زاویه اصطکاک داخلی متناظر با تنش‌های قائم 50 و 150 کیلوپاسکال به‏ترتیب 5/74 و 96/68 بوده، که مضاف بر آن، میانگین زوایای اتساع، 22/32 درصد کاهش یافت. در بالاست گروه چهار، بیشینه زاویه اصطکاک، در حضور تنش‌های قائم 50 و 150 کیلوپاسکال، در مقایسه با حالت بدون دورپیچی، به‏ترتیب 77/11 و 80/24 درصد افزایش یافت؛ میانگین زوایای اتساع نیز 86/27 درصد کاهش یافت. همچنین، مطالعه حاضر نشان داد که رفتار برشی بالاست متأثر از اندازه چشمه ژئوگرید (A) است. جمعبندی نتایج نشان می‌دهد که استفاده از روش دورپیچی سبب بهبود قابل ملاحظه‌ی رفتار برشی بالاست شده، که می‌توان از این روش برای حفظ پایداری خطوط بالاستی در قوس‌ها بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Shear Strength Parameters of Encased Ballast with Geogrid

نویسندگان [English]

  • Morteza Esmaeili 1
  • Ali Pourrashno 2
1 School of Railway Engineering Iran University of Science and Technology (IUST)
2 School of Railway Engineering-Iran University of Science and Technology
چکیده [English]

In the present study utilizing large scale direct shear test, the effect of ballast encasing with geogrid has been investigated. In this mater two ballast grading of 1 and 4 have been considered in conjunction with three types of geogrids GP35/35, GP40/20 and GP60/20. All direct shear test have been carried out under the vertical surcharges of50, 100 and 150 kPa with shear deformation rate of 1mm/min. The outcomes of the results reveals that in absence of geogrid encasing, the shear strength of ballast depends on the maximum particle size, uniformity coefficient and the vertical surcharge value. In the case of geogrid encasing of the ballast has promoted the shear strength behavior whereas for the grade 1 gradation of the ballast, the maximum friction angle corresponding to 50 and 150 kPa surcharges have been 74.5 and 68.96 degrees while the maximum reduction percentage in dilation angle has been 32.22. On the other hand for ballast grading 4, the mentioned variations have been correspondingly obtained as 30.12, 14.67 and 27.86 percentages.

کلیدواژه‌ها [English]

  • Maximum shear strength
  • Internal friction angle
  • Dilation angle
  • Encasing with geogrid
ASTM D3080. 2011. “Standard test method for direct shear test of soils under consolidated drained conditions”. ASTM International, West Conshohocken.
Bagherzadeh-Khalkhali, A. and Mirghasemi, A. A. 2009. “Numerical and experimental direct shear tests for coarse-grained soils”. Particuol., 7(1): 83-91.
Biabani, M. M. and Indraratna, B. 2015. “An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes”. Geotext. Geomembranes, 43(3): 240-249.
Biabani, M. M., Indraratna, B. and Ngo, N. T. 2016. “Modelling of geocell-reinforced subballast subjected to cyclic loading”. Geotext. Geomembranes, 44(4): 489-503.
Bolton, M. 1986. “The strength and dilatancy of sands”. Geotech., 36(1): 65-78.
Brown, S., Kwan, J. and Thom, N. 2007. “Identifying the key parameters that influence geogrid reinforcement of railway ballast”. Geotext. Geomembranes, 25(6): 326-335.
Chawla, S. and Shahu, J. 2016. “Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: Model tests”. Geotext. Geomembranes, 44(3): 366-380.
Danesh, A., Mirghasemi, A. A. and Palassi, M. 2020. “Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)”. Transport. Geotech., 23: 100357.
Danesh, A., Palassi, M. and Mirghasemi, A. A. 2018a. “Effect of sand and clay fouling on the shear strength of railway ballast for different ballast gradations”. Granul. Matter, 20(3): 1-14.
Danesh, A., Palassi, M. and Mirghasemi, A. A. 2018b. “Evaluating the influence of ballast degradation on its shear behaviour”. Int. J. Rail Transport., 6(3): 145-162.
Das, B. M. 2016. Use of “geogrid in the construction of railroads”. Innov. Infrastruct. Solutions, 1(1): 1-12.
Esmaeili, M., Zakeri, J. A. and Babaei, M. 2017. “Laboratory and field investigation of the effect of geogrid-reinforced ballast on railway track lateral resistance”. Geotext. Geomembranes, 45(2): 23-33.
Fernandes, G., Palmeira, E. M. and Gomes, R. C. 2008. “Performance of geosynthetic-reinforced alternative sub-ballast material in a railway track”. Geosynth. Int., 15(5): 311-321.
Gong, H., Song, W., Huang, B., Shu, X., Han, B., Wu, H. and Zou, J. 2019. “Direct shear properties of railway ballast mixed with tire derived aggregates: Experimental and numerical investigations”. Constr. Build. Mater., 200: 465-473.
Geoparsian. 2020. “Geoparsian Geosynthetics”. Retrieved from https://geoparsian.com
Hussaini, S. K. K., Indraratna, B. and Vinod, J. S. 2015. “Performance assessment of geogrid-reinforced railroad ballast during cyclic loading”. Transport. Geotech., 2: 99-107.
Hussaini, S. K. K., Indraratna, B. and Vinod, J. S. 2016. “A laboratory investigation to assess the functioning of railway ballast with and without geogrids”. Transport. Geotech., 6: 45-54.
Indraratna, B., Ionescu, D. and Christie, H. 1998. “Shear behavior of railway ballast based on large-scale triaxial tests”. J. Geotech. Geoenviron. Eng., 124(5): 439-449.
Indraratna, B., Khabbaz, H., Salim, W. and Christie, D. 2006. “Geotechnical properties of ballast and the role of geosynthetics in rail track stabilisation”. Proc. Inst. Civ. Eng.-Ground Improvement, 10(3): 91-101.
Indraratna, B., Ngo, N. T. and Rujikiatkamjorn, C. J. G. 2011. “Behavior of geogrid-reinforced ballast under various levels of fouling”. Geotext. Geomembranes, 29(3): 313-322.
Indraratna, B., Hussaini, S. K. K. and Vinod, J. S. 2012. “On the shear behavior of ballast-geosynthetic interfaces”. Geotech. Test. J., 35(2): 305-312.
Indraratna, B., Hussaini, S. K. K. and Vinod, J. 2013. “The lateral displacement response of geogrid-reinforced ballast under cyclic loading”. Geotext. Geomembranes, 39: 20-29.
Indraratna, B., Ngo, N. T., Rujikiatkamjorn, C. and Vinod, J. 2014. “Behavior of fresh and fouled railway ballast subjected to direct shear testing: Discrete element simulation”. Int. J. Geomech., 14(1): 34-44.
Jia, W., Markine, V., Guo, Y. and Jing, G. 2019. “Experimental and numerical investigations on the shear behaviour of recycled railway ballast”. Constr. Build. Mater., 217: 310-320.
Kharanaghi, M. M. and Briaud, J. L. 2020. “Large-scale direct shear test on railroad ballast”. Proceedings of the Geo-Congress 2020: Modeling, Geomaterials, and Site Characterization.
Liu, J., Wang, P. and Liu, J. 2015. “Macro-and micro-mechanical characteristics of crushed rock aggregate subjected to direct shearing”. Transport. Geotech., 2: 10-19.
Mishra, D. and Mahmud, S. N. 2017. “Effect of particle size and shape characteristics on ballast shear strength: A numerical study using the direct shear test”. Proceedings of the ASME/IEEE Joint Rail Conference.
Ngo, N. T., Indraratna, B. and Rujikiatkamjorn, C. 2014. “DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal”. Comput. Geotech., 55: 224-231.
Ngo, N. T., Indraratna, B. and Rujikiatkamjorn, C. 2017. “A study of the geogrid–subballast interface via experimental evaluation and discrete element modelling”. Granul. Matter, 19(3): 1-16.
Ngo, N. T., Indraratna, B., Ferreira, F. B. and Rujikiatkamjorn, C. 2018. “Improved performance of geosynthetics enhanced ballast: Laboratory and numerical studies”. Proc. Inst. Civ. Eng.-Ground Improvement, 171(4): 202-222.
Oh, J. 2013. “Parametric study on geogrid-reinforced track substructure”. Int. J. Railway, 6(2): 59-63.
Sadeghi, J., Kian, A. R. T., Ghiasinejad, H., Moqaddam, M. F. and Motevalli, S. 2020. “Effectiveness of geogrid reinforcement in improvement of mechanical behavior of sand-contaminated ballast”. Geotext. Geomembranes, 48(6): 768-779.
Simoni, A., Houlsby, G. T. 2006. “The direct shear strength and dilatancy of sand–gravel mixtures”. Geotech. Geol. Eng., 24(3): 523-549.
Suhr, B., Marschnig, S. and Six, K. J. G. 2018. “Comparison of two different types of railway ballast in compression and direct shear tests: Experimental results and DEM model validation”. Granul. Matter, 20(4): 70.
Sweta, K. and Hussaini, S. K. K. 2018. “Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions”. Geotext. Geomembranes, 46(3): 251-256.
Sweta, K. and Hussaini, S. K. K. 2019. “Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition”. Geotext. Geomembranes, 47(1): 23-31.
TolouKian, A. R., Sadeghi, J. and Zakeri, J. A. 2018. “Large-scale direct shear tests on sand-contaminated ballast”. Proc. Inst. Civ. Eng.-Geotech. Eng., 171(5): 451-461.
VPSPS. 2005. “Iranian national code 301: General technical specification of superstructure of ballasted railway track”. VPSPS Islamic Republic of Iran, Tehran, Iran.
Yan, W. and Dong, J. 2011. Effect of particle grading on the response of an idealized granular assemblage”. Int. J. Geomech., 11(4): 276-285.
Yu, Z., Woodward, P., Laghrouche, O. and Connolly, D. P. 2019. True triaxial testing of geogrid for high-speed railways”. Transport. Geotech., 20: 100247.