ارزیابی شاخص خرابی و سن روسازی راه با استفاده از تحلیل طیف سنجی نمونه های آسفالتی و تصاویر ماهواره ای سنتینل-2 ( مطالعه موردی: جاده سبزوار- شاهرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد راه و ترابری، گروه ژئوتکنیک- راه و نقشه برداری، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرودشاهرود، ایران.

2 استادیار، گروه ژئوتکنیک- راه و نقشه برداری، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران.

چکیده

پیش‌بینی بودجه ساخت و تعمیر راه‌ها یکی از مهمترین مسائل در تخصیص بودجه دولت‌ها بوده است. شناسایی زودهنگام مشکلات راه‌ها با اقدامات پیشگیرانه باعث افزایش عمر و کاهش هزینه‌های تعمیر و نگهداری آنها می‌شود. در این پژوهش، 35 کیلومتر از محور سبزوار- شاهرود به دلیل قرار گرفتن در منطقه گرم و خشک و مسیر ترانزیت شرق به غرب، که همواره خرابی‌های آسفالتی در آن مشهود است، در نظر گرفته شد. به منظور پیش‌بینی شاخص خرابی روسازی (PCI) براساس عمر روسازی و عمر روسازی (AGE)، ابتدا در محل‌های تعیین‌شده با استفاده از GPS به‌صورت تصادفی سیستماتیک و نظر کارشناسی نمونه‏های آسفالت برداشت شد و در آزمایشگاه فیزیک آنالیز طیفی با استفاده از دستگاه اسپکتومتر صورت پذیرفت. تصاویر اُپتیکی سنتینل-2 پردازش شد و سپس از باندهای سبز، آبی، قرمز و مادون‌قرمز نزدیک به علت توان تفکیک 10متری و طول موج بین 440  تا 900 نانومتر، که مشابه طیف پاسخ آسفالت بود، استفاده گردید. در ادامه، با استفاده از نتایج طیف‌سنجی نمونه‏های آسفالت و استخراج ارزش پیکسلی باندهای متناظر در محل نمونه‏های آسفالت از تصاویر ماهواره‏ای سنتینل-2 استخراج و تحلیل‏های آماری انجام شدند. رابطه معکوس بین AGE و PCI نشان‏دهنده‌ این است که تحلیل‌های میدانی و محاسبه شاخص‌های خرابی به درستی صورت گرفته است و بسط آنها نیز در تحلیل باندها به عنوان متغیرهای وابسته درست انتخاب شده است. در ارتباط‌ بین شاخص خرابی راه (PCI) و طیف‌سنجی تصاویر ماهواره‌ای در پیش‌بینی شاخص خرابی، باند مادون قرمز نزدیک (B8) با ضریب تعیین (48/0 R2=) عملکرد بهتری نسبت به سایر باندها داشته و از دقت نسبتاً بیشتری برخوردار بود که می‌توان آن را به سایر شاخص‌های خرابی مانند شاخص عملکرد روسازی (PSI) بسط داد. با توجه به توان تفکیک مکانی متوسط (10 متر) باندهای انتخاب شده ماهواره سنتنیل-2 در مقایسه با ابعاد خرابی‌های روسازی، ضریب همگرایی نسبتاً کم (323/0R= ) در این تحلیل وجود داشت. در ارتباط‌ بین شاخص سن روسازی (AGE) و طیف‌سنجی تصاویر ماهواره‌ای در پیش‌بینی سن روسازی باند مادون قرمز نزدیک (B8) با ضریب تعیین (55/0R2=) عملکرد بهتری نسبت به سایر باندها داشت. در این تحلیل، ضرایب همگرایی (56/0R=) بیشتر بوده و می‌توان عنوان کرد که اعداد طول موج‌های بالای طیف‏سنجی، سن کمتر روسازی را نشان می‌دهند. در بررسی خرابی‌های روسازی، عبور بار ترافیکی نقش مهمی دارد. همچنین، استفاده از معیارهای موجود انتخاب نمونه‌های تصادفی نقش مهمی در تعیین شاخص‌های خرابی و نتایج نهایی تحلیل دارند. لذا تصاویر ماهواره‏ای سنتینل -2 در باند مادون قرمز نزدیک با اندازه تفکیک 10 متر، همبستگی بهتری با شاخص‏های سن و خرابی راه نشان دادند. البته این تصاویر در جاده‌های با عرض بیشتر از 10 متر، برای پیش-بینی خرابی عملکرد، کارایی مناسب‌تری خواهند داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of pavement condition index and aging using spectroscopy analysis of asphalt samples and Sentinel-2 satellite images (Case Study: Sabzevar- Shahrood Road)

نویسندگان [English]

  • Mehran Rostami 1
  • Saeid Gharechelou 2
  • Hosein Ghasemzadeh Tehrani 2
1 MSc. in Road and Transsportaion, Department of Geotechnics, Road and Surveying, Faculty of Civil Engineering, Shahrood University of Technology Shahrood, I. R. Iran.
2 Assistant Professor, Department of Geotechnics, Road and Surveying, Faculty of Civil Engineering, Shahrood University of Technology Shahrood, I. R. Iran.
چکیده [English]

Predicting the budget for road construction and maintenance has been one of the most significant issues in government budget allocation. Early identification of road problems through preventive measures increases their lifespan and reduces maintenance costs. This study focuses on a 35-kilometer stretch of the Sabzevar-Shahrood road, located in a hot and dry region and serving as a transit path from east to west, where asphalt damage is frequently observed. To forecast the Pavement Condition Index (PCI) based on pavement age (AGE), systematic random sampling of asphalt was conducted at designated locations using GPS, followed by spectral analysis in a physics laboratory with a spectrometer. Optical images from Sentinel-2 were processed, utilizing green, blue, red, and near-infrared bands due to their 10-meter resolution and wavelengths ranging from 440 to 900 nanometers, which correspond closely to the asphalt response spectrum. Subsequent analyses involved extracting pixel values from the corresponding bands at the asphalt sampling sites within the Sentinel-2 satellite images and conducting statistical evaluations. The inverse relationship between AGE and PCI indicates that field analyses and calculations of distress indices were performed accurately, with their extension in band analysis as dependent variables being appropriately selected. In examining the relationship between the PCI and satellite imagery spectroscopy for predicting distress indices, the near-infrared band (B8) exhibited superior performance with a coefficient of determination (R2 = 0.48) compared to other bands, demonstrating relatively high accuracy that can be extended to other distress indicators such as the Pavement Serviceability Index (PSI). Given the average spatial resolution of 10 meters for the selected bands from Sentinel-2, a relatively low convergence coefficient  (R=0.323) was observed in this analysis concerning pavement distress dimensions. Furthermore, in assessing the relationship between pavement age (AGE) and satellite imagery spectroscopy for predicting pavement age, the near-infrared band (B8) outperformed other bands with a coefficient of determination R2= 0.55. In this analysis, higher convergence coefficients (R=0.56) were noted, suggesting that higher wavelength numbers in spectroscopy indicate younger pavement conditions. Traffic load significantly influences pavement distress; additionally, employing existing criteria for random sample selection plays a crucial role in determining distress indices and final analytical outcomes. Therefore, Sentinel-2 satellite images in the near-infrared band with a resolution of 10 meters demonstrated better correlation with age and distress indices of roads. However, these images will perform more effectively on roads wider than 10 meters.
In examining the relationship between the PCI and satellite imagery spectroscopy for predicting distress indices, the near-infrared band (B8) exhibited superior performance with a coefficient of determination (R2 = 0.48) compared to other bands, demonstrating relatively high accuracy that can be extended to other distress indicators such as the Pavement Serviceability Index (PSI). Given the average spatial resolution of 10 meters for the selected bands from Sentinel-2, a relatively low convergence coefficient (R=0.323) was observed in this analysis concerning pavement distress dimensions. ،he near-infrared band (B8) outperformed other bands with a coefficient of determination (R2= 0.55). In this analysis, higher convergence coefficients (R=0.56) were noted, suggesting that higher wavelength numbers in spectroscopy indicate younger pavement conditions. Traffic load significantly influences pavement distress; additionally, employing existing criteria for random sample selection plays a crucial role in determining distress indices and final analytical outcomes. Therefore, Sentinel-2 satellite images in the near-infrared band with a resolution of 10 meters demonstrated better correlation with age and distress indices of roads. However, these images will perform more effectively on roads wider than 10 meters.

کلیدواژه‌ها [English]

  • Asphalt aging
  • Spectral analysis
  • PCI prediction
  • Pavement distress
  • Sentinel -2 image
Taghipour, A., Rasouli, H., and Famil, A. 2018. “Investigating the capability of high-precision drone imagery in assessing asphalt deterioration phenomenon (Case study: Alvar Sofla village, near Tabriz city) ”. Transportation Infrastructure Engineering, 4(3): 99–116. (In persian)
Jalil Hashemi, S. A., and Divandari, H. 2018. “Application of geographic information system (GIS) in pavement management”. In Proceedings of the International Congress on Engineering Sciences and Sustainable Urban Development. (In persian)
Chatrsimab, Z. 2016. “Investigating land use changes using satellite imagery and remote sensing techniques to study desertification (Case study: Rig Matin) ”. Application of Remote Sensing and GIS in Planning, 6(4): 53–72. (In persian)
Ranjbar, S., Moghaddas Nejad, F., and Zakeri, H. 2020. “Detection and classification of pavement cracks using deep convolutional networks”. Amirkabir Journal of Civil Engineering, 52(9): 2255–2278. (In persian)
Ranjbar, S., Moghaddas Nejad, F., and Zakeri, H. 2021. “Evaluation of asphalt pavement stripping failure using deep learning and wavelet transform”. Amirkabir Journal of Civil Engineering, 53(11): 4577–4598. (In persian)
Shafabakhsh, Gh., Nadarpour, H., and Fasihi, F. 2010. “Selecting the optimal neural network algorithm for analyzing flexible road pavements”. Modeling in Engineering, 8(21): 45–57. (In persian)
Shahabian Moghaddam, R., Sahaf, S. A., Mohammadzadeh Moghaddam, A., and Pourreza, H. 2017. “Automatic detection and classification of pavement distresses based on image texture analysis in spatial and transform domains”. Transportation Quarterly, 9(35): 121–142. (In persian)
Fakhri, M., and Shahni Dezfolian, R. 2018. “Determining effective pavement structural number based on roughness index and surface distress using regression and neural network models”. Transportation Research Journal, 15(4): 207–221. (In persian)
Malmirian, H. 2001. Principles and fundamentals of remote sensing (Part four) ”. Geographical Information Journal 'Sepehr', 8(32): 8–10. (In persian)
Nobakht, Sh., & Minagar, M. 2011. “Using geographic information system (GIS) in pavement management”. In Proceedings of the National Seminar on GIS Applications in Economic, Social, and Urban Planning. Tehran, Iran. (In persian)
Abdellatif, M., Peel, H., Cohn, A. G. and Fuentes, R. 2019. “Hyperspectral imaging for autonomous inspection of road pavement defects”. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC) (pp. 384-392.
Diamanti, N. and Redman, D. 2012. “Field observations and numerical models of GPR response from vertical pavement cracks”. J. Appl. Geophys., 81: 106-116.
Dimitra, T., Stavros, S., Zina M. and Nektarios C. 2019.  “Detailed urban surface characterization using spectra from enhanced spatial resolution Sentinel-2 imagery and a hierarchical multiple endmember spectral mixture analysis approach”. J. Appl. Remote Sens., 13(1): 016514.
Djamai, N. and Fernandes, R. 2018. “Comparison of SNAP-derived Sentinel-2A L2A product to ESA product over Europe”. Remote Sens., 10(6): 926.
Dumoulin, J., Ibos, L., Ibarra-Castanedo, C., Mazioud, A., Marchetti, M., Maldague, X. and Bendada, A. 2010. “Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: comparison between experiments and numerical simulations”. J. Mod. Optic., 57(18): 1759-1769.
Herold, M., Roberts, D., Noronha, V. and Smadi, O. 2008. “Imaging spectrometry and asphalt road surveys”. Transport. Res. Part C: Emerg. Tech., 16(2): 153-166.
Mettas, C., Agapiou, A., Themistocleous, K., Neocleous, K., Hadjimitsis, D. and Michaelides, S. 2016. “Risk provision using field spectroscopy to identify spectral regions for the detection of  defects in flexible pavements”. Nat. Hazards, 83(1): 83-96.
Mettas, C., Evagorou, E., Agapiou, A. and Hadjimitsis, D. 2020. “The use of colorimeters to support remote sensing techniques on asphalt pavements”. Remote Sens., 12(23): 3911.
Mousavi, S. H., Ranjbar, A. and Haseli, M. 2016. “Monitoring and trending of land use changes in Abarkooh basin using satellite images (1976-2014)”. Sci.-Res. Quart. Geog. Data (SEPEHR), 25(97): 129-146.
Nikolaou, A. 2016. “Study of asphalt pavement deterioration through remote sensing”. Master’s Thesis, Department of Civil Engineering and Geomatics, Cyprus University of Technology.
Pan, Y., Zhang, X., Jin, X., Yu, H., Rao, J., Tian, S. and Li, C. 2016. “Road pavement condition mapping and assessment using remote sensing data based on MESMA”. In IOP Conference Series: Earth and Environmental Science (34 (1), 012023). IOP Publishing.
Radopoulou, S. C. and Brilakis, I. 2015. “Patch detection for pavement assessment”. Automat. Constr., 53: 95-104.
Rigabadi, A., Rezaei Zadeh Herozi, M. and Rezagholilou, A. 2021. “An attempt for development of pavements temperature prediction models based on remote sensing data and artificial neural network”. Int. J. Pavement Eng., 1-10.
Shahi, K., Shafri, H. Z. M., Taherzadeh, E., Mansor, S. and Muniandy, R. 2015. “A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery”. The Egypt. J. Remote Sens. Sp. Sci., 18(1): 27-33.
Wang, Q. and Atkinson, P. M. 2018. “Spatio-temporal fusion for daily Sentinel-2 images”. Remote Sens. Environ., 204, 31-42.
Wang, J., Yang, D., Xie, Z., Wang, H., Hao, Z., Zhou, F. and Wang, X. 2024. “Research progress of optical satellite remote sensing monitoring asphalt pavement aging”. Photogramm. Eng. Remote Sens., 90(8): 471-482.
Wu, K. 2015. “Development of PCI-based pavement performance model for management of road infrastructure system”. Arizona State University.
Zhou, Y., He, B., Xiao, F., Feng, Q., Kou, J. and Liu, H. 2019. “Retrieving the lake trophic level in Wuhan, China”. Remote Sens., 11(4): 457.